Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Ultramicroscopy ; 267: 114038, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39276761

RESUMEN

Determining the full five-parameter grain boundary characteristics from experiments is essential for understanding grain boundaries impact on material properties, improving related models, and designing advanced alloys. However, achieving this is generally challenging, in particular at nanoscale, due to their 3D nature. In our study, we successfully determined the grain boundary characteristics of an annealed nickel-tungsten alloy (NiW) nanocrystalline needle-shaped specimen (tip) containing twins using Scanning Precession Electron Diffraction (SPED) Tomography. The presence of annealing twins in this face-centered cubic (fcc) material gives rise to common reflections in the SPED diffraction patterns, which challenges the reconstruction of orientation-specific virtual dark field (VDF) images required for tomographic reconstruction of the 3D grain shapes. To address this, an automated post-processing step identifies and deselects these shared reflections prior to the reconstruction of the VDF images. Combined with appropriate intensity normalization and projection alignment procedures, this approach enables high-fidelity 3D reconstruction of the individual grains contained in the needle-shaped sample volume. To probe the accuracy of the resulting boundary characteristics, the twin boundary surface normal directions were extracted from the 3D voxelated grain boundary map using a 3D Hough transform. For the sub-set of coherent Σ3 boundaries, the expected {111} grain boundary plane normals were obtained with an angular error of <3° for boundary sizes down to 400 nm². This work advances our ability to precisely characterize and understand the complex grain boundaries that govern material properties.

2.
Interface Focus ; 14(3): 20230072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39081621

RESUMEN

Morphing materials are typically either very compliant to achieve large shape changes or very stiff but with small shape changes that require large actuation forces. Interestingly, fish fins overcome these limitations: fish fins do not contain muscles, yet they can change the shape of their fins with high precision and speed while producing large hydrodynamic forces without collapsing. Here, we present a 'stiff' morphing beam inspired from the individual rays in natural fish fins. These synthetic rays are made of acrylic (PMMA) outer beams ('hemitrichs') connected with rubber ligaments which are 3-4 orders of magnitude more compliant. Combinations of experiments and models of these synthetic rays show strong nonlinear geometrical effects: the ligaments are 'mechanically invisible' at small deformations, but they delay buckling and improve the stability of the ray at large deformations. We use the models and experiments to explore designs with variable ligament densities, and we generate design guidelines for optimum morphing shape (captured using the first moment of curvature), that capture the trade-offs between morphing compliance (ease of morphing the structure) and flexural stiffness. The design guidelines proposed here can help the development of stiff morphing bioinspired structures for a variety of applications in aerospace, biomedicine or robotics.

3.
Cureus ; 16(6): e62360, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39006695

RESUMEN

INTRODUCTION: Biomarkers like white blood cells, C-reactive protein, procalcitonin, and interleukin-1 are used in patients with sepsis for early diagnosis, differentiating various infections, making decisions to start antibiotics and evaluate their response, and to prognosticate morbidity and mortality. Despite the availability of these biomarkers, the prognosis of patients with sepsis in the ICU remains poor. Hence, this study was carried out to test the efficacy of procalcitonin and neutrophil-to-lymphocyte ratio (NLR) to prognosticate mortality and morbidity in terms of incidence of organ dysfunction and length of ICU stay in sepsis patients. METHODS: In this prospective observational study, we measured NLR and procalcitonin at days one, three, and seven of sepsis patients and divided them into four groups: low NLR and high procalcitonin (LNHP), high NLR and high procalcitonin (HNHP), high NLR and low procalcitonin (HNLP), and low NLR and low procalcitonin (LNLP). Mortality at 28 days was noted as the primary outcome. RESULTS: Out of 85 patients included in the study, five were lost to follow-up. Although no statistically significant difference was found in the primary outcome between all four groups, regression analysis showed that rising NLR and procalcitonin values were associated with a significant increase in mortality. CONCLUSION: Serial values of NLR and procalcitonin are more important in predicting severity in comparison to a single value at presentation and can be used as a prognostic marker in sepsis patients.

4.
Bioinspir Biomim ; 19(4)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38722377

RESUMEN

State-of-the-art morphing materials are either very compliant to achieve large shape changes (flexible metamaterials, compliant mechanisms, hydrogels), or very stiff but with infinitesimal changes in shape that require large actuation forces (metallic or composite panels with piezoelectric actuation). Morphing efficiency and structural stiffness are therefore mutually exclusive properties in current engineering morphing materials, which limits the range of their applicability. Interestingly, natural fish fins do not contain muscles, yet they can morph to large amplitudes with minimal muscular actuation forces from the base while producing large hydrodynamic forces without collapsing. This sophisticated mechanical response has already inspired several synthetic fin rays with various applications. However, most 'synthetic' fin rays have only considered uniform properties and structures along the rays while in natural fin rays, gradients of properties are prominent. In this study, we designed, modeled, fabricated and tested synthetic fin rays with bioinspired gradients of properties. The rays were composed of two hemitrichs made of a stiff polymer, joined by a much softer core region made of elastomeric ligaments. Using combinations of experiments and nonlinear mechanical models, we found that gradients in both the core region and hemitrichs can increase the morphing and stiffening response of individual rays. Introducing a positive gradient of ligament density in the core region (the density of ligament increases towards the tip of the ray) decreased the actuation force required for morphing and increased overall flexural stiffness. Introducing a gradient of property in the hemitrichs, by tapering them, produced morphing deformations that were distributed over long distances along the length of the ray. These new insights on the interplay between material architecture and properties in nonlinear regimes of deformation can improve the designs of morphing structures that combine high morphing efficiency and high stiffness from external forces, with potential applications in aerospace or robotics.


Asunto(s)
Aletas de Animales , Materiales Biomiméticos , Animales , Aletas de Animales/fisiología , Aletas de Animales/anatomía & histología , Fenómenos Biomecánicos , Biomimética/métodos , Peces/fisiología , Peces/anatomía & histología
5.
J Inorg Biochem ; 249: 112369, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776829

RESUMEN

Quinalizarin, an analogue of anthracycline anticancer agents, is an anticancer agent itself. A CuII complex was prepared and characterized by elemental analysis, UV-Vis & IR spectroscopy, mass spectrometry, EPR and DFT. The intention behind the preparation of the complex was to increase cellular uptake, compare its binding with DNA against that of quinalizarin, modulation of semiquinone formation, realization of human DNA topoisomerase I & human DNA topoisomerase II inhibition and observation of anticancer activity. While the first two attributes of complex formation lead to increased efficacy, decrease in semiquinone generation could results in a compromise with efficacy. Inhibition of human DNA topoisomerase makes up this envisaged compromise in free radical activity since the complex shows remarkable ability to disrupt activities of human DNA topoisomerase I and II. The complex unlike quinalizarin, does not catalyze flow of electrons from NADH to O2 to the extent known for quinalizarin. Hence, decrease in semiquinone or superoxide radical anion could make modified quinalizarin [as CuII complex] less efficient in free radical pathway. However, it would be less cardiotoxic and that would be advantageous to qualify it as a better anticancer agent. Although binding to calf thymus DNA was comparable to quinalizarin, it was weaker than anthracyclines. Low cost of quinalizarin could justify consideration as a substitute for anthracyclines but the study revealed IC50 of quinalizarin/CuII-quinalizarin was much higher than anthracyclines or their complexes. Even then, there is a possibility that CuII-quinalizarin could be an improved and less costly form of quinalizarin as anticancer agent.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Humanos , ADN-Topoisomerasas de Tipo I/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antibióticos Antineoplásicos , Inhibidores de Topoisomerasa II/farmacología , Superóxidos/metabolismo , Antraciclinas , Radicales Libres/metabolismo , Cobre/química , Complejos de Coordinación/química
6.
Int J Biol Macromol ; 245: 125305, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37315676

RESUMEN

An important aspect of research pertaining to Curcumin (HCur) is the need to arrest its degradation in aqueous solution and in biological milieu. This may be achieved through complex formation with metal ions. For this reason, a complex of HCur was prepared with ZnII, that is not likely to be active in redox pathways, minimizing further complications. The complex is monomeric, tetrahedral, with one HCur, an acetate and a molecule of water bound to ZnII. It arrests degradation of HCur to a considerable extent that was realized by taking it in phosphate buffer and in biological milieu. The structure was obtained by DFT calculations. Stable adduct formation was identified between optimized structures of HCur and [Zn(Cur)] with DNA (PDB ID: 1BNA) through experiments validated with multiscale modeling approach. Molecular docking studies provide 2D and 3D representations of binding of HCur and [Zn(Cur)] through different non-covalent interactions with the nucleotides of the chosen DNA. Through molecular dynamics simulation, a detailed understanding of binding pattern and key structural characteristics of the generated DNA-complex was obtained following analysis by RMSD, RMSF, radius of gyration, SASA and aspects like formation of hydrogen bonds. Experimental studies provide binding constants for [Zn(Cur)] with calf thymus DNA at 25 °C that effectively helps one to realize its high affinity towards DNA. In the absence of an experimental binding study of HCur with DNA, owing to its tendency to degrade in solution, a theoretical analysis of the binding of HCur to DNA is extremely helpful. Besides, both experimental and simulated binding of [Zn(Cur)] to DNA may be considered as a case of pseudo-binding of HCur to DNA. In a way, such studies on interaction with DNA helps one to identify HCur's affinity for cellular target DNA, not realized through experiments. The entire investigation is an understanding of experimental and theoretical approaches that has been compared continuously, being particularly useful when a molecule's interaction with a biological target cannot be realized experimentally.


Asunto(s)
Curcumina , Curcumina/química , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Secuencia de Bases , Zinc , ADN/química
7.
Acta Biomater ; 167: 171-181, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364788

RESUMEN

Fins from ray-finned fishes do not contain muscles, yet fish can change the shape of their fins with high precision and speed, while producing large hydrodynamic forces without collapsing. This remarkable performance has been intriguing researchers for decades, but experiments have so far focused on homogenized properties, and models were developed only for small deformations and small rotations. Here we present fully instrumented micromechanical tests on individual rays from Rainbow trout in both morphing and flexural deflection mode and at large deflections. We then present a nonlinear mechanical model of the ray that captures the key structural elements controlling the mechanical behavior of rays under large deformations, which we successfully fit onto the experiments for property identification. We found that the flexural stiffness of the mineralized layers in the rays (hemitrichs) is 5-6 times lower than their axial stiffness, an advantageous combination to produce stiff morphing. In addition, the collagenous core region can be modeled with spring elements which are 3-4 orders of magnitude more compliant than the hemitrichs. This fibrillar structure provides negligible resistance to shearing from the initial position, but it prevents buckling and collapse of the structure at large deformations. These insights from the experiments and nonlinear models can serve as new guidelines for the design of efficient bioinspired stiff morphing materials and structures at large deformations. STATEMENT OF SIGNIFICANCE: Fins from ray-finned fishes do not contain muscles, yet fish can change the shape of their fins with high precision and speed, while producing large hydrodynamic forces without collapsing. Experiments have so far focused on homogenized properties, and models were developed only for small deformations and small rotations providing limited insight into the rich nonlinear mechanics of natural rays. We present micromechanical tests in both morphing and flexural deflection mode on individual rays, a nonlinear model of the ray that captures the mechanical behavior of rays under large deformations and combine microCT measurements to generate new insights into the nonlinear mechanics of rays. These insights can serve as new guidelines for the design of efficient bioinspired stiff morphing materials and structures at large deformations.


Asunto(s)
Peces , Natación , Animales , Fenómenos Biomecánicos , Natación/fisiología , Dinámicas no Lineales , Microtomografía por Rayos X , Aletas de Animales/fisiología
8.
Ultramicroscopy ; 238: 113536, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35567967

RESUMEN

The properties of polycrystalline materials are related to their microstructures and hence a complete description, including size, shape, and orientation of the grains, is necessary to understand the behavior of materials. Here, we use Scanning Precession Electron Diffraction (SPED) in the Transmission Electron Microscope (TEM) combined with a tilt series to reconstruct individual grains in 3D within a polycrystalline dual-phase cold wire-drawn pearlitic steel sample. Nanoscale ferrite grains and intragranular cementite particles were indexed using an Automated Crystallographic Orientation Mapping (ACOM) tool for each tilt dataset. The grain orientations were tracked through the tilt datasets and projections of the individual grains were reconstructed from the diffraction data using an orientation-specific Virtual Dark Field (VDF) approach for tomographic reconstruction. The algorithms used to process and reconstruct such datasets are presented. These algorithms represent an extension to the ACOM approach that may be straightforwardly applied to other multi-phase polycrystalline materials to enable 3D spatial and orientation reconstructions.

9.
ACS Omega ; 7(10): 8268-8280, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35309450

RESUMEN

Formation of nitro radical anion (-NO2 •-) and other reduction products of 5-nitroimidazoles, although important for antimicrobial activity, makes the drugs neurotoxic. Hence, an appropriate generation and their role in the free radical pathway needs proper realization. This was attempted by studying the action of tinidazole and its CuII complexes on model targets (nucleic acid bases and calf thymus DNA). Results obtained were correlated with studies on biological species where prevention of biofilm formation on Staphylococcus aureus and Pseudomonas aeruginosa was followed. Tinidazole and its CuII complexes subjected to electrochemical reduction in aqueous solution, under de-aerated conditions, interact with model nucleic acid bases and calf thymus DNA. These model targets were followed to realize what happens when such compounds undergo enzymatic reduction within cells of microorganisms that they eventually kill. Studies reveal that CuII complexes were better in modifying nucleic acid bases and calf thymus DNA than tinidazole; damage caused to nucleic acid bases was correlated with that caused to DNA, indicating that compounds affect DNA rich in thymine and adenine. Minimum bactericidal concentrations on sessile S. aureus and P. aeruginosa for the monomeric CuII complex were 12.5 and 20.25 µM respectively, while those for the dimeric complex were 40.0 and 45.0 µM, respectively. Biofilm formation by P. aeruginosa and S. aureus and viability count of sessile cells were also determined. CuII complexes of tinidazole brought about substantial reduction in carbohydrate and protein content in S. aureus and P. aeruginosa. Downregulation of quorum sensing signaling mechanism viz. reduced production of pyocyanin and elastase during biofilm formation was also detected. CuII complexes showed much higher tendency to prevent biofilm formation than tinidazole, almost comparable to amoxicillin, an established drug in this regard.

10.
ACS Omega ; 7(1): 1428-1436, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036804

RESUMEN

A Co(III) complex of 1-amino-4-hydroxy-9,10-anthraquinone (QH) (Scheme-1) having the molecular formula CoQ3 (Scheme-2) was prepared and characterized by elemental analysis, FTIR spectroscopy, UV-vis spectroscopy, fluorescence spectroscopy, and mass spectrometry. In the absence of a single crystal, the energy-optimized molecular structure of CoQ3 was determined by employing computational methods that was validated using spectroscopic evidences, elemental analysis, and mass spectrometry data. The electrochemical properties of the complex were analyzed using cyclic voltammetry and indicate a substantial modification of the electrochemical properties of the parent amino-hydroxy-9,10-anthraquinone. CoQ3 was thereafter tested on MCF-7 human breast cancer cells. The IC50 value for a 24 h incubation was found to be (95 ± 0.05) µg/mL. The study showed that such cancer cells underwent both early and late apoptosis following the interaction with CoQ3.

11.
Heliyon ; 7(8): e07746, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34458604

RESUMEN

Cytotoxicity by anthracycline antibiotics is attributed to several pathways. Important among them are formation of free-radical intermediates. However, their generation makes anthracyclines cardiotoxic which is a concern on their use as anticancer agents. Hence, any change in redox behavior that address cardiotoxicity is welcome. Modulation of redox behavior raises the fear that cytotoxicity could be compromised. Regarding the generation of free radical intermediates on anthracyclines, a lot depends on the surrounding environment (oxic or anoxic), polarity and pH of the medium. In case of anthracyclines, one-electron reduction to semiquinone or two-electron reduction to quinone-dianion are crucial both for cytotoxicity and for cardiotoxic side effects. The disproportion-comproportionation equilibria at play between quinone-dianion, free quinone and semiquinone control biological activity. Whatever is the form of reduction, semiquinones are generated as a consequence of the presence of anthracyclines and these interact with a biological target. Alizarin, a simpler anthracycline analogue and its MnII complex were subjected to electrochemical reduction to realize what happens when anthracyclines are reduced by compounds present in cells as members of the electron transport chain. Glassy carbon electrode maintained at the pre-determined reduction potential of a compound was used for reduction of the compounds. Nucleobases and calf thymus DNA that were maintained in immediate vicinity of such radical generation were used as biological targets. Changes due to the generated species under aerated/de-aerated conditions on nucleobases and on DNA helps one to realize the process by which alizarin and its MnII complex might affect DNA. The study reveals alizarin was more effective on nucleobases than the complex in the free radical pathway. Difference in damage caused by alizarin and the MnII complex on DNA is comparatively less than that observed on nucleobases; the complex makes up for any inefficacy in the free radical pathway by its other attributes.

12.
Indian J Crit Care Med ; 25(7): 773-779, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34316171

RESUMEN

OBJECTIVES: "Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016" provides guidelines in regard to prompt management and resuscitation of sepsis or septic shock. The study is aimed to assess the robustness of randomized controlled trials (RCTs) that formulate these guidelines in terms of fragility index and reverse fragility index. METHOD: RCTs that contributed to these guidelines having parallel two-group design, 1:1 allocation ratio, and at least one dichotomous outcome were included in the study. The median fragility index was calculated for RCTs with significant statistical outcomes, whereas the median reverse fragility index was calculated for RCTs with nonsignificant statistical results. RESULTS: Hundred RCTs that met the inclusion criteria were analyzed. The median fragility index was 5.5 [95% confidence interval (CI) 1-30] and median reverse fragility index was 13 (95% CI 12.07-16.8) at a p value of 0.05. The median reverse fragility index was 16 (95% CI 10-26) at a p value of 0.01. Most of the RCTs included in this analysis were of good quality, having a median Jadad score of 6. CONCLUSION: This analysis found that the surviving sepsis guidelines were based on highly robust RCTs with statistically insignificant results and on some moderately robust RCTs with statistically significant results. RCTs with statistically insignificant results were more robust than RCTs with statistically significant results in regard to these guidelines. HIGHLIGHTS: The study assessed the robustness of randomized controlled trials (RCTs) that were used to formulate surviving sepsis guidelines. Most RCTs showed statistically nonsignificant results. RCTs with statistically significant results were moderately fragile whereas RCTs with nonsignificant results were more robust. HOW TO CITE THIS ARTICLE: Choupoo NS, Das SK, Saikia P, Dey S, Ray S. How Robust are the Evidences that Formulate Surviving Sepsis Guidelines? An Analysis of Fragility and Reverse Fragility of Randomized Controlled Trials that were Referred in these Guidelines. Indian J Crit Care Med 2021;25(7):773-779.

13.
J Inorg Biochem ; 222: 111494, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34091095

RESUMEN

Curcumin is a tantalizing molecule with multifaceted therapeutic potentials. However, its therapeutic applications are severely hampered because of poor bioavailability, attributed to its instability and aqueous insolubility. In an attempt to overcome this inherent limitation and develop curcumin-based antibacterials, we had earlier synthesized and characterized a metal complex of Cu(II) with curcumin, having the formula [Cu(Curcumin)(OCOCH3)(H2O)], hereafter referred to as Cu(Cur). In this study, the complex, i.e., Cu(Cur), was investigated for its stability and antibacterial activity along with its possible mechanism of action in comparison to the parent molecule, curcumin. Complex formation resulted in improved stability as Cu(Cur) was found to be highly stable under different physiological conditions. Such improved stability was verified with the help of UV-Vis spectroscopy and HPLC. With improved stability, Cu(Cur) exhibited potent and significantly enhanced activity over curcumin against both E. coli and S. aureus. Calcein leakage assay revealed that the complex triggered immediate membrane permeabilization in S. aureus. This membrane disruptive mode of action was further corroborated by microscopic visualization. The excellent potency of the complex was augmented by its safe toxicological profile as it was non-hemolytic and non-cytotoxic towards mammalian cells, making it a suitable candidate for in vivo investigations. Altogether, this investigation is a critical appraisal that advocates the antibacterial potential of this stable, membrane-targeting and non-toxic complex, thereby presenting new perspectives for its therapeutic application against bacterial infections.


Asunto(s)
Antibacterianos/farmacología , Complejos de Coordinación/farmacología , Curcumina/análogos & derivados , Curcumina/farmacología , Células 3T3 , Animales , Antibacterianos/síntesis química , Antibacterianos/toxicidad , Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Cobre/química , Curcumina/toxicidad , Escherichia coli/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos
14.
ACS Omega ; 6(12): 8226-8238, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33817481

RESUMEN

A family of three water-soluble half-sandwich arene-ruthenium complexes, depicted as C 1 -C 3 , having the general formula [Ru(p-cymene)(L)Cl]Cl has been synthesized, where L represents (1H-benzo[d]imidazol-2-yl)guanidine (L 1 ) or (benzo[d]oxazol-2-yl)guanidine (L 2 ) or (benzo[d]thiazol-2-yl)guanidine (L 3 ). The crystal structure of complex C 3 has been determined. The complexes show several absorption bands in the visible and ultraviolet regions, and they also show prominent emission in the visible region while excited near 400 nm. Studies on the interaction of ligands L 1 -L 3 and complexes C 1 -C 3 with calf thymus DNA reveal that the complexes are better DNA binders than the ligands, which is attributable to the imposed planarity of the ruthenium-bound guanidine-based ligand, enabling it to serve as a better intercalator. Molecular docking studies show that the complexes effectively bind with DNA through electrostatic and H-bonding interactions and partial intercalation of the guanidine-based ligands. Cytotoxicity studies carried out on two carcinoma cell lines (PC3 and A549) and on two non-cancer cell lines (BPH1 and WI-38) show a marked improvement in antitumor activity owing to complex formation, which is attributed to improvement in cellular uptake on complex formation. The C 1 complex is found to exhibit the most prominent activity against the PC3 cell line. Inclusion of the guanidine-based ligands in the half-sandwich ruthenium-arene complexes is found to be effective for displaying selective cytotoxicity to cancer cells and also for convenient tracing of the complexes in cells due to their prominent emissive nature.

15.
J Tradit Complement Med ; 11(1): 27-37, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33511059

RESUMEN

BACKGROUND AND AIM: The leaves of AnnonareticulataLinn (niú x inguǒ; Bullock's heart), a member of Annonaceae family, have been used extensively in folk medicine; however, its wound healing potential is yet to be explored. Our aim was to investigate the wound healing ability of A. reticulataleaf extract in vitro and in streptozotocin induced diabetic mice model. MATERIAL AND METHODS: We observed the plant extract induced proliferation and migration of primary human dermal fibroblast (HDF), human skin fibroblast cell line (GM00637) and human keratinocyte cell line (HACAT). The expression of transforming growth factor beta (TGF-ß), connective tissue growth factor (CTGF), vascular endothelial growth factor (VEGF), alpha smooth muscle actin (α-SMA), matrix metalloproteinases (MMP-2, MMP-9), collagen-1, collagen-3, focal adhesion kinase (FAK) were evaluated by Western blot and gelatin zymography. Excisional diabetic wound model was used for in vivo wound healing assay. Furthermore, we processed wound tissue for histological and immunohistochemical study. RESULT: A. reticulata L. leaf extract stimulates proliferation and migration of HDF, skin fibroblast and keratinocyte significantly in a dose dependent manner; expression of TGF-ß, CTGF, VEGF, α-SMA, MMP-2, MMP-9, collagen-1, collagen-3, FAK increased. Additionally, an enhanced expression of phospho-SMAD2, phospho-SMAD3 in the treated cells indicated the activation of TGF-ß signal transduction pathway, similarly increased expression of phospho-AkT suggested activation of PI3/AkT pathway. Expression of CTGF and α-SMA was also increased significantly in wound tissue. Mass spectrometric analysis revealed that mainly two compounds to be present in the extract: quercetin and ß-sitosterol. CONCLUSION: Collective data suggest that A.reticulata leaf extract may have a stimulatory effect in diabetic wound healing.

16.
ACS Omega ; 5(40): 25668-25676, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33073092

RESUMEN

The treatment of malignant cells that are deficient in oxygen due to the insufficient flow of blood is often seen as a major hindrance in radiotherapy. Such cells become radio-resistant because molecular oxygen, the natural and best radio-sensitizer, is depleted. Hence, to compensate this deficiency in oxygen, there is a need for agents that enhance radiation-induced damage of cells (radio-sensitizers) in a manner that normal cells are least affected. Simultaneously, agents capable of showing activity under hypoxic conditions are known as hypoxic cytotoxins that selectively and preferably destroy cells under hypoxic environments. 5-Nitroimidazoles fit both definitions. Their efficiency is based on their ability to generate the nitro radical anion that interacts with the strands of DNA within cells, either damaging or modifying them, leading to cell death. 5-Nitroimidazoles are important radio-pharmaceuticals (radio-sensitizers) in cancer-related treatments where the nitro radical anion has an important role. Since its generation leads to neurotoxic side effects that may be controlled through metal complex formation, this study looks at the possibility of two monomeric complexes of Ornidazole [1-chloro-3-(2-methyl-5-nitro-1H-imidazole-1-yl)propan-2-ol] with CuII and ZnII to be better radio-sensitizers and/or hypoxic cytotoxins than Ornidazole. The study reveals that although there is a decrease in nitro radical anion formation by complexes, such a decrease does not hamper their radio-sensitizing ability. Nucleic acid bases (thymine, cytosine, and adenine) or calf thymus DNA used as targets were irradiated with 60Co γ rays either in the absence or presence of Ornidazole and its monomeric complexes. Radiation-induced damage of nucleic acid bases was followed by high-performance liquid chromatography (HPLC), and modification of calf thymus DNA was followed by ethidium bromide fluorescence. Studies indicate that the complexes were better in performance than Ornidazole. CuII-ornidazole was significantly better than either Ornidazole or ZnII-ornidazole, which is attributed to certain special features of the CuII complex; aspects like having a stable lower oxidation state enable it to participate in Fenton reactions that actively influence radio-sensitization and the ability of the complex to bind effectively to DNA.

17.
Indian J Crit Care Med ; 24(8): 615-616, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33024361

RESUMEN

How to cite this article: Das S, Ray S. Mottling, Lactate, and the Microcirculation in Sepsis: Are We Back to Bedside Clinical Assessment after the Honeymoon with Technology? Indian J Crit Care Med 2020;24(8):615-616.

19.
ACS Omega ; 5(27): 16342-16357, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32685797

RESUMEN

Curcumin is an important molecule with a plethora of pharmacological activities and therapeutic potentials. Despite its efficacy, it remained a potential drug candidate owing to hydrolytic instability and poor aqueous solubility. To overcome the limitations related to low solubility, low bioavailability, and the fact that curcumin is never present in solution as a "single unit", its complex was prepared with MnII with the idea that binding to a metal ion might help to resolve these issues. The complex was characterized by elemental and spectral analysis. The structure of the complex was determined by density functional theory calculations. The complex was stable at physiological buffer conditions, unlike curcumin. It did not have any detrimental effect on mammalian cells. There was a significant enhancement in the antibacterial activity of the complex compared to curcumin against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. It showed a strong affinity for deoxyribonucleic acid (DNA) evident from a high binding constant value with calf thymus DNA and also from the retarded electrophoretic mobility of bacterial plasmid DNA. The complex showed "superoxide dismutase-like" activity leading to the generation of reactive oxygen species (ROS). The complex caused bacterial membrane perturbation evident from calcein leakage assay, which was further corroborated by scanning and transmission electron microscopic experiments. Overall, the present study shows improved stability and antibacterial potency of a nontoxic complex over curcumin. Its multitargeting mode of action such as ROS-production, effective binding with DNA, and permeabilization of bacterial membrane together allows it to be an effective antibacterial agent that could be taken further for therapeutic use against bacterial infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA