Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biopolymers ; 114(9): e23556, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37341448

RESUMEN

In recent times mucoadhesive drug delivery systems are gaining popularity in oral cancer. It is a malignancy with high global prevalence. Despite significant advances in cancer therapeutics, improving the prognosis of late-stage oral cancer remains challenging. Targeted therapy using mucoadhesive polymers can improve oral cancer patients' overall outcome by offering enhanced oral mucosa bioavailability, better drug distribution and tissue targeting, and minimizing systemic side effects. Mucoadhesive polymers can also be delivered via different formulations such as tablets, films, patches, gels, and nanoparticles. These polymers can deliver an array of medicines, making them an adaptable drug delivery approach. Drug delivery techniques based on these mucoadhesive polymers are gaining traction and have immense potential as a prospective treatment for late-stage oral cancer. This review examines leading research in mucoadhesive polymers and discusses their potential applications in treating oral cancer.


Asunto(s)
Neoplasias de la Boca , Polímeros , Humanos , Sistemas de Liberación de Medicamentos/métodos , Preparaciones Farmacéuticas , Mucosa Bucal , Neoplasias de la Boca/tratamiento farmacológico
2.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166782, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37286145

RESUMEN

Temozolomide (TMZ) is the leading chemotherapeutic agent used for glioma therapy due to its good oral absorption and blood-brain barrier permeability. However, its anti-glioma efficacy may be limited due to its adverse effects and resistance development. O6-Methylguanine-DNA-methyltransferase (MGMT), an enzyme associated with TMZ resistance, is activated via the NF-κB pathway, which is found to be upregulated in glioma. TMZ also upregulates NF-κB signaling like many other alkylating agents. Magnolol (MGN), a natural anti-cancer agent, has been reported to inhibit NF-κB signaling in multiple myeloma, cholangiocarcinoma, and hepatocellular carcinoma. MGN has already shown promising results in anti-glioma therapy. However, the synergistic action of TMZ and MGN has not been explored. Therefore, we investigated the effect of TMZ and MGN treatment in glioma and observed their synergistic pro-apoptotic action in both in vitro and in vivo glioma models. To explore the mechanism of this synergistic action, we found that MGN inhibits MGMT enzyme both in vitro and in vivo glioma. Next, we established the link between NF-κB signaling and MGN-induced MGMT inhibition in glioma. MGN inhibits the phosphorylation of p65, a subunit of NF-κB, and its nuclear translocation to block NF-κB pathway activation in glioma. MGN-induced NF-κB inhibition results in the transcriptional inhibition of MGMT in glioma. TMZ and MGN combinatorial treatment also impedes p65 nuclear translocation to inhibit MGMT in glioma. We observed a similar effect of TMZ and MGN treatment in the rodent glioma model. Thus, we concluded that MGN potentiates TMZ-induced apoptosis in glioma by inhibiting NF-κB pathway-mediated MGMT activation.


Asunto(s)
Glioma , FN-kappa B , Humanos , Temozolomida/farmacología , Temozolomida/uso terapéutico , FN-kappa B/metabolismo , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/metabolismo , Metilasas de Modificación del ADN/uso terapéutico , Proteínas Supresoras de Tumor/genética , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/uso terapéutico
3.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166702, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37044238

RESUMEN

Chemoresistance is a primary cause of breast cancer treatment failure, and protein-protein interactions significantly contribute to chemoresistance during different stages of breast cancer progression. In pursuit of novel biomarkers and relevant protein-protein interactions occurring during the emergence of breast cancer chemoresistance, we used a computational predictive biological (CPB) approach. CPB identified associations of adhesion molecules with proteins connected with different breast cancer proteins associated with chemoresistance. This approach identified an association of Integrin ß1 (ITGB1) with chemoresistance and breast cancer stem cell markers. ITGB1 activated the Focal Adhesion Kinase (FAK) pathway promoting invasion, migration, and chemoresistance in breast cancer by upregulating Erk phosphorylation. FAK also activated Wnt/Sox2 signaling, which enhanced self-renewal in breast cancer. Activation of the FAK pathway by ITGB1 represents a novel mechanism linked to breast cancer chemoresistance, which may lead to novel therapies capable of blocking breast cancer progression by intervening in ITGB1-regulated signaling pathways.


Asunto(s)
Neoplasias de la Mama , Integrina beta1 , Femenino , Humanos , Biomarcadores , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Integrina beta1/metabolismo
4.
Exp Cell Res ; 424(1): 113488, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36736226

RESUMEN

Glioma is difficult-to-treat because of its infiltrative nature and the presence of the blood-brain barrier. Temozolomide is the only FDA-approved drug for its management. Therefore, finding a novel chemotherapeutic agent for glioma is of utmost importance. Magnolol, a neolignan, has been known for its apoptotic role in glioma. In this work, we have explored a novel anti-glioma mechanism of Magnolol associated with its role in autophagy modulation. We found increased expression levels of Beclin-1, Atg5-Atg12, and LC3-II and lower p62 expression in Magnolol-treated glioma cells. PI3K/AKT/mTOR pathway proteins were also downregulated in Magnolol-treated glioma cells. Next, we treated the glioma cells with Insulin, a stimulator of PI3K/AKT/mTOR signaling, to confirm that Magnolol induced autophagy by inhibiting this pathway. Insulin reversed the effect on Magnolol-mediated autophagy induction. We also established the same in in vivo glioma model where Magnolol showed an anti-glioma effect by inducing autophagy. To confirm the cytotoxic effect of Magnolol-induced autophagy, we used Chloroquine, a late-stage autophagy inhibitor. Chloroquine efficiently reversed the anti-glioma effects of Magnolol both in vitro and in vivo. Our study revealed the cytotoxic effect of Magnolol-induced autophagy in glioma, which was not previously reported. Additionally, Magnolol showed no toxicity in non-cancerous cell lines as well as rat organs. Thus, we concluded that Magnolol is an excellent candidate for developing new therapeutic strategies for glioma management.


Asunto(s)
Antineoplásicos , Glioma , Insulinas , Lignanos , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Antineoplásicos/farmacología , Lignanos/farmacología , Lignanos/uso terapéutico , Glioma/tratamiento farmacológico , Glioma/metabolismo , Autofagia , Cloroquina/farmacología , Cloroquina/uso terapéutico , Insulinas/farmacología , Insulinas/uso terapéutico , Línea Celular Tumoral , Apoptosis
5.
Macromol Rapid Commun ; 44(2): e2200594, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36302094

RESUMEN

Development of fluorescent imaging probes is an important topic of research for the early diagnosis of cancer. Based on the difference between the cellular environment of tumor cells and normal cells, several "smart" fluorescent probes have been developed. In this work, a glycopolymer functionalized Förster resonance energy transfer (FRET) based fluorescent sensor is developed, which can monitor the pH change in cellular system. One-pot sequential reversible addition-fragmentation chain transfer (RAFT)polymerization technique is employed to synthesize fluorescent active triblock glycopolymer that can undergo FRET change on the variation of pH. A FRET pair, fluorescein o-acrylate (FA) and 7-amino-4-methylcoumarin (AMC) is linked via a pH-responsive polymer poly [2-(diisopropylamino)ethyl methacrylate] (PDPAEMA), which can undergo reversible swelling/deswelling under acidic/neutral condition. The presence of glycopolymer segment provides stability, water solubility, and specificity toward cancer cells. The cellular FRET experiments on cancer cells (MDA MB 231) and normal cells (3T3 fibroblast cells) demonstrate that the material is capable of distinguishing cells as a function of pH change.


Asunto(s)
Neoplasias , Puntos Cuánticos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Polimerizacion , Concentración de Iones de Hidrógeno
6.
Front Oncol ; 12: 896633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928861

RESUMEN

Despite the advancement in research methodologies and technologies for cancer research, there is a high rate of anti-cancer drug attrition. In this review, we discuss different conventional and modern approaches in cancer research and how human-centric models can improve on the voids conferred by more traditional animal-centric models, thereby offering a more reliable platform for drug discovery. Advanced three-dimensional cell culture methodologies, along with in silico computational analysis form the core of human-centric cancer research. This can provide a holistic understanding of the research problems and help design specific and accurate experiments that could lead to the development of better cancer therapeutics. Here, we propose a new human-centric research roadmap that promises to provide a better platform for cancer research and drug discovery.

7.
Macromol Biosci ; 22(9): e2200069, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35797485

RESUMEN

Photodynamic therapy has emerged as a noninvasive treatment modality for several types of cancers. However, conventional hydrophobic photosensitizers (PS) suffer from low water solubility and poor tumor-targeting ability. Therefore, PS modified with glycopolymers can offer adequate water solubility, biocompatibility, and tumor-targeting ability due to the presence of multiple sugar units. In this study, a well-defined block copolymer poly(3-O-methacryloyl-d-glucopyranose)-b-poly(2-(4-formylbenzoyloxy)ethylmethacrylate) (PMAG-b-PFBEMA) containing pendant glucose and aldehyde units is synthesized via reversible addition-fragmentation chain transfer polymerization method. A water-soluble PS (toluidine blue O; TBO) and a potent anticancer drug, Doxorubicin (Dox) are introduced to the polymer backbone via acid-labile Schiff-base reaction (PMAG-b-PFBEMA_TBO_Dox). The PMAG-b-PFBEMA_TBO_Dox is then anchored on the surface of gold nanoparticles (AuNPs) via electrostatic interaction. This hybrid system exhibits excellent reactive oxygen species (ROS) generating ability under exposure of 630 nm light-emitting diode along with triggered release of Dox under the acidic pH of tumor cells. The in vitro cytotoxicity study on human breast cancer cell line, MDA MB 231, for this hybrid system shows promising results due to the synergistic effect of ROS and Dox released. Thus, this glycopolymer-based dual (chemo-photodynamic) therapy model can work as potential material for future therapeutics.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Fotoquimioterapia , Línea Celular Tumoral , Doxorrubicina/química , Oro/química , Oro/farmacología , Humanos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Polímeros/química , Especies Reactivas de Oxígeno/metabolismo , Agua
8.
Cancer Lett ; 544: 215811, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35787922

RESUMEN

Fusion genes are abnormal genes resulting from chromosomal translocation, insertion, deletion, inversion, etc. ETV6, a rather promiscuous partner forms fusions with several other genes, most commonly, the NTRK3 gene. This fusion leads to the formation of a constitutively activated tyrosine kinase which activates the Ras-Raf-MEK and PI3K/AKT/MAPK pathways, leading the cells through cycles of uncontrolled division and ultimately resulting in cancer. Targeted therapies against this ETV6-NTRK3 fusion protein are much needed. Therefore, to find a targeted approach, a transcription factor RBPJ regulating the ETV6 gene was established and since the ETV6-NTRK3 fusion gene is downstream of the ETV6 promoter/enhancer, this fusion protein is also regulated. The regulation of the ETV6 gene via RBPJ was validated by ChIP analysis in human glioblastoma (GBM) cell lines and patient tissue samples. This study was further followed by the identification of an inhibitor, Furamidine, against transcription factor RBPJ. It was found to be binding with the DNA binding domain of RBPJ with antitumorigenic properties and minimal organ toxicity. Hence, a new target RBPJ, regulating the production of ETV6 and ETV6-NTRK3 fusion protein was found along with a potent RBPJ inhibitor Furamidine.


Asunto(s)
Proteínas de Unión al ADN , Glioblastoma , Proteínas de Unión al ADN/genética , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-ets/genética , Receptor trkC/genética , Receptor trkC/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Factores de Transcripción/genética
9.
Exp Cell Res ; 417(1): 113195, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35561786

RESUMEN

The Transforming growth factor-ß1 (TGF- ß1) in the tumor microenvironment (TME) is the major cytokine that acts as a mediator of tumor-stroma crosstalk, which in fact has a dual role in either promoting or suppressing tumor development. The cancer-associated fibroblasts (CAFs) are the major cell types in the TME, and the interaction with most of the epithelial cancers is the prime reason for cancer survival. However, the molecular mechanisms, associated with the TGF- ß1 induced tumor promotion through tumor-CAF crosstalk are not well understood. In the Reverse Warburg effect, CAFs feed the adjacent cancer cells by lactate produced during the aerobic glycolysis. We hypothesized that the monocarboxylate transporter, MCT4 which is implicated in lactate efflux from the CAFs, must be overexpressed in the CAFs. Contextually, to explore the role of TGF- ß1 in the hypoxia-induced autophagy in CAFs, we treated CoCl2 and external TGF- ß1 to the human dermal fibroblasts and L929 murine fibroblasts. We demonstrated that hypoxia accelerated the TGF- ß1 signaling and subsequent transformation of normal fibroblasts to CAFs. Moreover, we elucidated that synergistic induction of autophagy by hypoxia and TGF- ß1 upregulate the aerobic glycolysis and MCT4 expression in CAFs. Furthermore, we showed a positive correlation between glucose consumption and MCT4 expression in the CAFs. Autophagy was also found to be involved in the EMT in hypoxic CAFs. Collectively, these findings reveal the unappreciated role of autophagy in TME, which enhances the CAF transformation and that promotes tumor migration and metastasis via the reverse Warburg effect.


Asunto(s)
Autofagia , Fibroblastos Asociados al Cáncer , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Neoplasias , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Fibroblastos Asociados al Cáncer/patología , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Hipoxia/metabolismo , Ácido Láctico/metabolismo , Ratones , Neoplasias/patología , Microambiente Tumoral , Regulación hacia Arriba
10.
Biochim Biophys Acta Rev Cancer ; 1877(2): 188692, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35122882

RESUMEN

Sox family of transcriptional factors play essential functions in development and are implicated in multiple clinical disorders, including cancer. Sox2 being their most prominent member and performing a critical role in reprogramming differentiated adult cells to an embryonic phenotype is frequently upregulated in multiple cancers. High Sox2 levels are detected in breast tumor tissues and correlate with a worse prognosis. In addition, Sox2 expression is connected with resistance to conventional anticancer therapy. Together, it can be said that inhibiting Sox2 expression can reduce the malignant features associated with breast cancer, including invasion, migration, proliferation, stemness, and chemoresistance. This review highlights the critical roles played by the Sox gene family members in initiating or suppressing breast tumor development, while primarily focusing on Sox2 and its role in breast tumor initiation, maintenance, and progression, elucidates the probable mechanisms that control its activity, and puts forward potential therapeutic strategies to inhibit its expression.


Asunto(s)
Neoplasias de la Mama , Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Transformación Celular Neoplásica/patología , Femenino , Humanos , Células Madre Neoplásicas/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factores de Transcripción/genética
11.
Biochem Pharmacol ; 186: 114474, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33607074

RESUMEN

Conventionally, Cancer-associated fibroblasts (CAFs) are considered as an inducer of chemoresistance in cancer cells. However, the underlying mechanism by which carcinomas induce chemoresistance in CAFs through tumor-stroma cross-talk is largely unknown. Henceforth, we uncovered a network of paracrine signals between carcinoma and CAFs that drives chemoresistance in CAFs. Acquired tamoxifen and 5-Fu resistant cell lines MCF-7 and MDA-MB-468 respectively showed higher apoptotic resistance compared to the parental cell. Besides, chemoresistant breast cancer cells showed overexpression of TGF-ß1 and have the higher potential to induce CAF phenotype in the normal dermal fibroblasts in a paracrine manner through the TGF-ß1 cytokine, compared to their parental cell. Moreover, the chemoresistant cancer cells augmented the EMT markers with a reduction of E-cadherin in the CAFs. Importantly we found out that the TGF- ß1 enriched conditioned media from both of the resistant cells triggered chemoresistance in the CAFs by p44/42 MAPK signaling axis. Mechanistically, pharmacological and genetic blockade of TGF-ß1 inhibits p44/42 MAPK activation with the subsequent restoration of chemosensitivity in the CAFs. Altogether we ascertained that chemoresistant cancer cells have tremendous potential to modulate the CAFs compared to the parental counterpart. Targeting TGF-ß1 and p44/42 MAPK signaling in the future may help to abrogate the chemoresistance in the CAFs.


Asunto(s)
Neoplasias de la Mama/metabolismo , Fibroblastos/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/biosíntesis , Proteína Quinasa 3 Activada por Mitógenos/biosíntesis , Comunicación Paracrina/fisiología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Femenino , Fibroblastos/efectos de los fármacos , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Comunicación Paracrina/efectos de los fármacos , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
12.
Carbohydr Polym ; 258: 117717, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33593579

RESUMEN

Globally, skin repair costs billion dollars per annum. Diversified matrices are fabricated to address this important area of healthcare. Most common limitations associated with them are the inflated production cost and insufficient functional repair. Our work explores the fabrication and potential utilization of Antheraea mylitta silk protein sericin (possessing inherent anti-bacterial and antioxidant properties) based hydrogels for skin tissue. The integrity of the hydrogels is achieved by combining sericin, chitosan (provide anti-bacterial and structural support), and glycosaminoglycans (component of biologically formed extracellular matrix). The hydrogels are functionalized by incorporation of vascular endothelial growth factor and transforming growth factor-ß. They exhibit enhanced cellular functions in terms of their growth, production of matrix metalloproteinase, and collagen along with the recovery of impairment and the reconstruction of the lost dermal tissue. The in vivo biocompatibility analyses reveal that sericin-containing hydrogels promote the repair of skin tissue, angiogenesis, and illicit minimal immune response. These unique hydrogels mimicking the naturally occurring skin tissue and imparting additional beneficial features provide an appropriate physical environment and biological cues for the promotion of skin tissue repair.


Asunto(s)
Quitosano/química , Glicosaminoglicanos/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Sericinas/química , Piel/efectos de los fármacos , Animales , Antibacterianos/química , Antioxidantes/química , Materiales Biocompatibles/química , Línea Celular Tumoral , Colágeno/química , Citocinas/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Hidrogeles/química , Técnicas In Vitro , Inflamación , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Masculino , Porosidad , Ratas , Ratas Wistar , Seda/química , Piel/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Blood Cells Mol Dis ; 87: 102523, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242839

RESUMEN

Hemoglobin E (HbE)/ß-thalassemia is a form of ß-hemoglobinopathy that is well-known for its clinical heterogeneity. Individuals suffering from this condition are often found to exhibit increased fetal hemoglobin (HbF) levels - a factor that may contribute to their reduced blood transfusion requirements. This study hypothesized that the high HbF levels in HbE/ß-thalassemia individuals may be guided by microRNAs and explored their involvement in the disease pathophysiology. The miRNA expression profile of hematopoietic progenitor cells in HbE/ß-thalassemia patients was investigated and compared with that of healthy controls. Using miRNA PCR array experiments, eight miRNAs (hsa-miR-146a-5p, hsa-miR-146b-5p, hsa-miR-148b-3p, hsa-miR-155-5p, hsa-miR-192-5p, hsa-miR-335-5p, hsa-miR-7-5p, hsa-miR-98-5p) were identified to be significantly up-regulated whereas four miRNAs (hsa-let-7a-5p, hsa-miR-320a, hsa-let-7b-5p, hsa-miR-92a-3p) were significantly down-regulated. Target analysis found them to be associated with several biological processes and molecular functions including MAPK and HIF-1 signaling pathways - the pathways known to be associated with HbF upregulation. Results of dysregulated miRNAs further indicated that miR-17/92 cluster might be of critical importance in HbF regulation. The findings of our study thus identify key miRNAs that can be extrinsically manipulated to elevate HbF levels in ß-hemoglobinopathies.


Asunto(s)
Hemoglobina E/genética , MicroARNs/genética , Talasemia beta/genética , Células Cultivadas , Regulación hacia Abajo , Hemoglobina Fetal/genética , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Transcriptoma , Regulación hacia Arriba
14.
J Biomater Sci Polym Ed ; 31(18): 2396-2417, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32838704

RESUMEN

Biomimetic characteristics of hydrogel scaffold are tuned in this study utilizing the synergy of alginate, gelatin, and microfluidically embedded voids. Superposition of alginate and gelatin polymer networks results in additional rigidity, which can be tuned by introduction of voids, and thereby allowing faster release of pore pressure through movement of aqueous phase through the pore network. More importantly, voids enabled the cells to penetrate from the surface of seeding into the depth of the scaffold and proliferate there, as demonstrated for MDA MB 231 breast cancer cells. The uniform voids, generated by the microfluidic device, self-align creating uniform macroporosity within the gel structure, get readily filled by the media due to hydrophilicity, and extend the characteristics of composite uniformly across the entire scaffold.


Asunto(s)
Alginatos , Gelatina , Biomimética , Ingeniería de Tejidos , Andamios del Tejido
15.
Proc Natl Acad Sci U S A ; 117(22): 12324-12331, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32409605

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive cancer without currently effective therapies. Radiation and temozolomide (radio/TMZ) resistance are major contributors to cancer recurrence and failed GBM therapy. Heat shock proteins (HSPs), through regulation of extracellular matrix (ECM) remodeling and epithelial mesenchymal transition (EMT), provide mechanistic pathways contributing to the development of GBM and radio/TMZ-resistant GBM. The Friend leukemia integration 1 (Fli-1) signaling network has been implicated in oncogenesis in GBM, making it an appealing target for advancing novel therapeutics. Fli-1 is linked to oncogenic transformation with up-regulation in radio/TMZ-resistant GBM, transcriptionally regulating HSPB1. This link led us to search for targeted molecules that inhibit Fli-1. Expression screening for Fli-1 inhibitors identified lumefantrine, an antimalarial drug, as a probable Fli-1 inhibitor. Docking and isothermal calorimetry titration confirmed interaction between lumefantrine and Fli-1. Lumefantrine promoted growth suppression and apoptosis in vitro in parental and radio/TMZ-resistant GBM and inhibited tumor growth without toxicity in vivo in U87MG GBM and radio/TMZ-resistant GBM orthotopic tumor models. These data reveal that lumefantrine, an FDA-approved drug, represents a potential GBM therapeutic that functions through inhibition of the Fli-1/HSPB1/EMT/ECM remodeling protein networks.


Asunto(s)
Antimaláricos/administración & dosificación , Antineoplásicos Alquilantes/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Lumefantrina/administración & dosificación , Temozolomida/administración & dosificación , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
16.
Oncotarget ; 11(13): 1097-1108, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-32284788

RESUMEN

Glioblastoma (GBM) is the most common primary brain tumor and is invariably fatal. Heat shock proteins (HSPs) provide protein signatures/biomarkers for GBM that afford potential as targets for developing anti-GBM drugs. In GBM, elevated expression of hypoxia inducible factors under the influence of Ets family proteins significantly promotes the expression of HSPs. RNAseq analysis identified HSPB1 as a prominent upregulated HSP in GBM and in radiation resistant/temozolomide resistant (radio/TMZR) GBM. Here, we established friend leukemia integration 1 (Fli-1), a member of Ets family to be playing a transcriptional regulatory role on the HSPB1 gene. Fli-1 binds to nucleotide residues GGAA at binding sites 3, 6 and 7 in the 5-kb upstream region of HSPB1. Fli-1 has been linked to oncogenic transformation with upregulation in radio/TMZR GBM. Overexpression of Fli-1 in GBM promotes resistance, whereas Fli-1 knockdown in radio/TMZR GBM cells suppresses resistance. We identify the underlying molecular mechanisms of Fli-1-mediated regulation of HSPB1 that drive extracellular matrix remodeling and epithelial to mesenchymal transition in radio/TMZR GBM cells. This study uncovers Fli-1 as a potential therapeutic target for combating radiation and temozolomide resistance in GBM.

17.
Ultrason Sonochem ; 60: 104797, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31546086

RESUMEN

Ultrasonicaion is non-chemical process where acoustic waves have been targeted to aqueous medium dispersed precursor materials. In situ synthesis of silver nanoparticles anchored in hydrogel matrix has been opted via ~20 kHz frequency assisted (bath sonication) synthesis having the ultrasonication power intensity (UPI) of ~106 J/m2. Power intensity is inversely proportional to the surface area of the clay tactoids. The hydrogel have been prepared by in situ 20 kHz assisted sonochemical destratification of laponite clay tactoids which could be terminologically stated as 'top-down method'. Silver nanoparticles (AgNPs) have been deposited in the surfaces of the porous matrix of hydrogel via 'soak and irradiate' method. Soaking of silver ions into the gel matrix is welcomed due to their efficient stabilization and fast transformation towards AgNPs. AgNPs played the key role in catalytic reduction and bactericidal activity. Moreover, the prepared hydrogel has enough robust to withstand cyclic stress, uniaxial stress and oscillatory stress which have been extensively justified by the physico-mechanical characterizations. The gel supported catalyst showed first order reaction kinetics and less time consuming period during reduction of 4-nitrophenol as a model pollutant.


Asunto(s)
Acústica , Antibacterianos/química , Arcilla , Elastómeros/química , Hidrogeles/química , Sonicación/métodos , Catálisis , Cinética , Nanopartículas del Metal/química , Nitrofenoles/química , Oxidación-Reducción , Plata/química , Nitrato de Plata/química
18.
Phytother Res ; 33(10): 2571-2584, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31359523

RESUMEN

Glioma is one of the most perplexing cancers because of its infiltrating nature, molecular signaling, and location in central nervous system. Blood-brain barrier acts as a natural barrier to the glioma making it difficult to access by conventional chemotherapy. Clinicians are using natural compounds or their derivatives for several diseases including different cancers. However, the feasibility of using natural compounds in glioma is not explored in details. Natural compounds can act over a wide variety of signaling pathways such as survival and metabolic pathways and induce cell death. Some of the natural agents have additional benefits of crossing biological barriers such as blood-brain barrier with ease having few or no impact on the surrounding healthy cells. All of these benefits make natural compounds a prospective candidate for the glioma management. This article evaluates the benefits of using natural compounds for glioma therapy and their possible mechanism of actions. We have discussed the natural compounds assessed currently for glioma therapy and proposed a few novel natural compounds with potential antiglioma effect based on their mechanism of action.


Asunto(s)
Productos Biológicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Animales , Productos Biológicos/farmacocinética , Productos Biológicos/farmacología , Barrera Hematoencefálica , Humanos
19.
Int J Biol Macromol ; 137: 545-553, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31220499

RESUMEN

The damage to the skin is most prominent and evident as it is our first line of defense and unremittingly under attack by biological and environmental factors. The restoration of the skin is dependent on the extent of the injury. To explore the prospects of new biomimetic material, bi-layered skin construct is fabricated in vitro with nonmulberry silk protein sericin and chitosan hydrogels using human dermal fibroblasts and keratinocytes. The in vitro analysis of the hydrogels showed enhanced adhesion, proliferation, and migration of skin cells with coordinated interaction amongst themselves leading to the synthesis of collagen IV and matrix metalloproteinase (MMP2 and MMP9). The in vivo evaluation indicates the regeneration of skin with densely packed collagen and formation of matured blood vessels in the animals implanted with sericin containing hydrogels. Moreover, the local and systemic immune response determined in vivo exhibits the biosafety of sericin based hydrogels. In addition, the cross-sectional analysis of the implanted hydrogels displays infiltration of the skin tissue cells into the hydrogels marking their biocompatibility and non-toxicity. The cumulative analysis of the in vitro and in vivo observations demonstrates that the sericin based hydrogels are non-inflammatory, supports the regeneration and repair of the skin tissue.


Asunto(s)
Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Hidrogeles/química , Regeneración/efectos de los fármacos , Sericinas/química , Sericinas/farmacología , Piel/efectos de los fármacos , Animales , Bombyx , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Masculino , Ensayo de Materiales , Ratas , Ratas Wistar , Piel/citología
20.
J Nanosci Nanotechnol ; 19(11): 6961-6964, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31039848

RESUMEN

Presence of carbon nanostructures (dots of 2-3 nm of diameter) in human blood plasma have been identified for the first time. The observed particles are N-doped carbon dots having surface active oxygen functional groups. This functionalized carbonaceous nanostructure may have been originated through catabolic processes of consumed foods and beverages. It may take part in different catalytic activities of biomolecules in cellular system necessary for normal physiological function which is unexplored yet.


Asunto(s)
Carbono , Nanoestructuras , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...