Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Otolaryngol Head Neck Surg ; 170(3): 977-980, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37933740

RESUMEN

The objective of this study was to characterize mucosal microbial shifts in patients with acute laryngeal injury (ALgI) after intubation. This cross-sectional study included 20 patients with ALgI who underwent early endoscopic intervention with tissue culture, 20 patients with idiopathic subglottic stenosis (iSGS) who underwent tissue culture during the routine endoscopic intervention, and 3 control patients who underwent mucosal swab culture. 70% of the ALgI patients had a positive culture compared to 5% of the iSGS patients and none of the controls. The most identified microbes isolated from ALgI patients included Staphylococcus species in 30% and Streptococcus species in 25%. The high rate of pathologic bacterial infiltration into postintubation laryngeal wounds supports efforts to reduce bacterial colonization of endotracheal tubes and highlights the role of culture-directed antibiotic therapy as a part of early intervention to improve outcomes for patients with ALgI.


Asunto(s)
Enfermedades de la Laringe , Laringoestenosis , Microbiota , Humanos , Estudios Transversales , Enfermedades de la Laringe/etiología , Laringoestenosis/etiología , Intubación Intratraqueal/efectos adversos
2.
J Pediatr Pharmacol Ther ; 28(6): 504-508, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130344

RESUMEN

OBJECTIVE: Proton pump inhibitors (PPIs) are commonly used to manage children with upper gastrointestinal symptoms and without a formal diagnosis. We investigated the effect of PPIs on esophageal mucosal transcriptome and active microbiota in children with normal esophagi. Furthermore, we examined whether the differences in host esophageal mucosal gene expression were driven by an underlying esophageal epithelial cell type composition. METHODS: Using metatranscriptomics, the host transcriptional and active microbial profiles were captured from 17 esophageal biopsy samples (PPI naïve [PPI-], n = 7; PPI exposed [PPI+], n = 10) collected from children without any endoscopic and histologic abnormalities in their esophagus (normal esophagus). Deconvolution computational analysis was performed with xCell to assess if the observed epithelial gene expression changes were related to the cell type composition in the esophageal samples. RESULTS: The median (IQR) age of our cohort was 14 years (12-16) with female (63%) preponderance. Both groups were similar in terms of their demographics and clinical features. Compared with PPI-, the PPI+ had upregulation of 27 genes including the MUC genes. The cell type composition was similar between the PPI- and PPI+ groups. Prevotella sp and Streptococcus sp were abundant in PPI+ group. CONCLUSIONS: In children with normal esophagus, PPI exposure can be associated with upregulation of esophageal mucosal homeostasis and epithelial cell function genes in a cell-type independent manner, and an altered esophageal microbiome. Additional studies are warranted to validate our findings and to investigate the causal effect of PPIs on the normal esophageal epithelium and microbial communities.

3.
J Cyst Fibros ; 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37953184

RESUMEN

BACKGROUND: The nutritional status of children with cystic fibrosis (CF), as assessed by their body mass index percentile (BMIp), is a critical determinant of long-term health outcomes. While the intestinal microbiome plays an important role in nutrition, little is known regarding the relationship of the microbiome and BMIp in children with CF. METHODS: Pediatric patients (< 18 years old) with CF and healthy comparison patients (HCs) were enrolled in the study and stool samples obtained. BMIp was categorized as Green Zone (BMIp > 50th), Yellow Zone (BMIp 25th-49th) and Red Zone (BMIp < 25th). Intestinal microbiome assessment was performed via 16S rRNA gene sequencing; microbial richness, diversity, and differential species abundance were assessed. RESULTS: Stool samples were collected from 107 children with CF and 50 age-matched HCs. Compared to HCs, children with CF were found to have lower bacterial richness, alpha-diversity, and a different microbial composition. When evaluating them by their BMIp color zone, richness and alpha-diversity were lowest in those in the Red Zone. In addition, an unclassified amplicon sequence variant (ASV) of Blautia, a known butyrate-producing anaerobe, was of lowest abundance in children in the Red Zone. CONCLUSION: Children with CF have a dysbiotic intestinal microbiome with specific changes that accompany changes in BMIp. Longitudinal assessments of the microbiome and its metabolic activities over time are needed to better understand how improvements in the microbiome may improve nutrition and enhance long-term survival in children with CF.

4.
Res Sq ; 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292825

RESUMEN

Background: Idiopathic subglottic stenosis (iSGS) is a rare fibrotic disease of the proximal airway affecting adult Caucasian women nearly exclusively. Life-threatening ventilatory obstruction occurs secondary to pernicious subglottic mucosal scar. Disease rarity and wide geographic patient distribution has previously limited substantive mechanistic investigation into iSGS pathogenesis. Result: By harnessing pathogenic mucosa from an international iSGS patient cohort and single-cell RNA sequencing, we unbiasedly characterize the cell subsets in the proximal airway scar and detail their molecular phenotypes. Results show that the airway epithelium in iSGS patients is depleted of basal progenitor cells, and the residual epithelial cells acquire a mesenchymal phenotype. Observed displacement of bacteria beneath the lamina propria provides functional support for the molecular evidence of epithelial dysfunction. Matched tissue microbiomes support displacement of the native microbiome into the lamina propria of iSGS patients rather than disrupted bacterial community structure. However, animal models confirm that bacteria are necessary for pathologic proximal airway fibrosis and suggest an equally essential role for host adaptive immunity. Human samples from iSGS airway scar demonstrate adaptive immune activation in response to the proximal airway microbiome of both matched iSGS patients and healthy controls. Clinical outcome data from iSGS patients suggests surgical extirpation of airway scar and reconstitution with unaffected tracheal mucosa halts the progressive fibrosis. Conclusion: Our data support an iSGS disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. These results refine our understanding of iSGS and implicate shared pathogenic mechanisms with distal airway fibrotic diseases.

5.
Virus Evol ; 9(1): vead006, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36880065

RESUMEN

Globally, the human respiratory syncytial virus (RSV) is one of the major causes of lower respiratory tract infections (LRTIs) in children. The scarcity of complete genome data limits our understanding of RSV spatiotemporal distribution, evolution, and viral variant emergence. Nasopharyngeal samples collected from hospitalized pediatric patients from Buenos Aires tested positive for RSV LRTI during four consecutive outbreaks (2014-2017) were randomly subsampled for RSV complete genome sequencing. Phylodynamic studies and viral population characterization of genomic variability, diversity, and migration of viruses to and from Argentina during the study period were performed. Our sequencing effort resulted in one of the largest collections of RSV genomes from a given location (141 RSV-A and 135 RSV-B) published so far. RSV-B was dominant during the 2014-2016 outbreaks (60 per cent of cases) but was abruptly replaced by RSV-A in 2017, with RSV-A accounting for 90 per cent of sequenced samples. A significant decrease in RSV genomic diversity-represented by both a reduction in genetic lineages detected and the predominance of viral variants defined by signature amino acids-was observed in Buenos Aires in 2016, the year prior to the RSV subgroup predominance replacement. Multiple introductions to Buenos Aires were detected, some with persistent detection over seasons, and also, RSV was observed to migrate from Buenos Aires to other countries. Our results suggest that the decrease in viral diversity may have allowed the dramatic predominance switch from RSV-B to RSV-A in 2017. The immune pressure generated against circulating viruses with limited diversity during a given outbreak may have created a fertile ground for an antigenically divergent RSV variant to be introduced and successfully spread in the subsequent outbreak. Overall, our RSV genomic analysis of intra- and inter-outbreak diversity provides an opportunity to better understand the epochal evolutionary dynamics of RSV.

6.
J Virol ; 97(3): e0147222, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36815771

RESUMEN

Respiratory syncytial virus (RSV) has a significant health burden in children, older adults, and the immunocompromised. However, limited effort has been made to identify emergence of new RSV genotypes' frequency of infection and how the combination of nasopharyngeal microbiome and viral genotypes impact RSV disease outcomes. In an observational cohort designed to capture the first infant RSV infection, we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes, during which the 2012/2013 season was dominated by RSV-A, whereas 2013 and 2014 was dominated by RSV-B. We found non-G-72nt-duplicated RSV-A strains were more frequent in male infants (P = 0.02), whereas G-72nt-duplicated genotypes (which is ON1 lineage) were seen equally in both males and females. DESeq2 testing of the nasal microbiome showed Haemophilus was significantly more abundant in infants with RSV-A infection compared to infants with RSV-B infection (adjusted P = 0.002). In addition, the broad microbial clustering of the abundant genera was significantly associated with infant sex (P = 0.03). Overall, we show sex differences in infection by RSV genotype and host nasopharyngeal microbiome, suggesting an interaction between host genetics, virus genotype, and associated nasopharyngeal microbiome. IMPORTANCE Respiratory syncytial virus (RSV) is one of the leading causes of lower respiratory tract infections in young children and is responsible for high hospitalization rates and morbidity in infants and the elderly. To understand how the emergence of RSV viral genotypes and viral-respiratory microbiome interactions contribute to infection frequency and severity, we utilized an observational cohort designed to capture the first infant RSV infection we employed multi-omics approaches to sequence 349 RSV complete genomes and matched nasopharyngeal microbiomes. We found non-G-72nt-duplicated RSV-A genotypes were more frequent in male infants, whereas G-72nt-duplicated RSV-A strains (ON1 lineage) were seen equally in both males and females. Microbiome analysis show Haemophilus was significantly more abundant in infants with RSV-A compared to infants with RSV-B infection and the microbial clustering of the abundant genera was associated with infant sex. Overall, we show sex differences in RSV genotype-nasopharyngeal microbiome, suggesting an interaction host genetics-virus-microbiome interaction.


Asunto(s)
Interacciones Microbiota-Huesped , Microbiota , Nasofaringe , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Femenino , Humanos , Lactante , Masculino , Genotipo , Microbiota/genética , Infecciones por Virus Sincitial Respiratorio/epidemiología , Virus Sincitial Respiratorio Humano/genética , Factores Sexuales , Nasofaringe/microbiología , Interacciones Microbiota-Huesped/fisiología
7.
J Virol ; 97(2): e0147822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656015

RESUMEN

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Asunto(s)
COVID-19 , Expresión Génica , Mucosa Respiratoria , SARS-CoV-2 , Carga Viral , Adulto , Humanos , Quimiocinas/fisiología , COVID-19/inmunología , COVID-19/virología , Expresión Génica/inmunología , Inmunidad Mucosa/inmunología , Interferones/fisiología , SARS-CoV-2/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología
8.
Influenza Other Respir Viruses ; 17(1): e13083, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36510692

RESUMEN

BACKGROUND: COVID-19 prevalence has remained high throughout the pandemic with intermittent surges, due largely to the emergence of genetic variants, demonstrating the need for more accessible sequencing technologies for strain typing. METHODS: A ligation-based typing assay was developed to detect known variants of severe acute respiratory syndrome virus 2 (SARS-CoV-2) by identifying the presence of characteristic single-nucleotide polymorphisms (SNPs). General principles for extending the strategy to new variants and alternate diseases with SNPs of interest are described. Of note, this strategy leverages commercially available reagents for assay preparation, as well as standard real-time polymerase chain reaction (PCR) instrumentation for assay performance. RESULTS: The assay demonstrated a combined sensitivity and specificity of 96.6% and 99.5%, respectively, for the classification of 88 clinical samples of the Alpha, Delta, and Omicron variants relative to the gold standard of viral genome sequencing. It achieved an average limit of detection of 7.4 × 104 genome copies/mL in contrived nasopharyngeal samples. The ligation-based strategy performed robustly in the presence of additional polymorphisms in the targeted regions of interest as shown by the sequence alignment of clinical samples. CONCLUSIONS: The assay demonstrates the potential for robust variant typing with performance comparable with next-generation sequencing without the need for the time delays and resources required for sequencing. The reduced resource dependency and generalizability could expand access to variant classification information for pandemic surveillance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma Viral
9.
J Infect Dis ; 227(10): 1194-1202, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-36375000

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is associated with acute respiratory infection. We sought to identify RSV variants associated with prolonged infection. METHODS: Among healthy term infants we identified those with prolonged RSV infection and conducted (1) a human genome-wide association study (GWAS) to test the dependence of infection risk on host genotype, (2) a viral GWAS for association with prolonged RSV infection using RSV whole-genome sequencing, (3) an analysis of all viral public sequences, (4) an assessment of immunological responses, and (5) a summary of all major functional data. Analyses were adjusted for viral/human population structure and host factors associated with infection risk. RESULTS: We identified p.E123K/D and p.P218T/S/L in G protein that were associated with prolonged infection (Padj = .01). We found no evidence of host genetic risk for infection. The RSV variant positions approximate sequences that could bind a putative viral receptor, heparan sulfate. CONCLUSIONS: Using analysis of both viral and host genetics we identified a novel RSV variant associated with prolonged infection in otherwise healthy infants and no evidence supporting host genetic susceptibility to infection. As the capacity of RSV for chronicity and its viral reservoir are not defined, these findings are important for understanding the impact of RSV on chronic disease and endemicity.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Lactante , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/genética , Cohorte de Nacimiento , Estudio de Asociación del Genoma Completo , Virus Sincitial Respiratorio Humano/genética , Predisposición Genética a la Enfermedad
10.
Sci Rep ; 12(1): 16579, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195733

RESUMEN

The cotton rat (Sigmodon) is the gold standard pre-clinical small animal model for respiratory viral pathogens, especially for respiratory syncytial virus (RSV). However, without a reference genome or a published transcriptome, studies requiring gene expression analysis in cotton rats are severely limited. The aims of this study were to generate a comprehensive transcriptome from multiple tissues of two species of cotton rats that are commonly used as animal models (Sigmodon fulviventer and Sigmodon hispidus), and to compare and contrast gene expression changes and immune responses to RSV infection between the two species. Transcriptomes were assembled from lung, spleen, kidney, heart, and intestines for each species with a contig N50 > 1600. Annotation of contigs generated nearly 120,000 gene annotations for each species. The transcriptomes of S. fulviventer and S. hispidus were then used to assess immune response to RSV infection. We identified 238 unique genes that are significantly differentially expressed, including several genes implicated in RSV infection (e.g., Mx2, I27L2, LY6E, Viperin, Keratin 6A, ISG15, CXCL10, CXCL11, IRF9) as well as novel genes that have not previously described in RSV research (LG3BP, SYWC, ABEC1, IIGP1, CREB1). This study presents two comprehensive transcriptome references as resources for future gene expression analysis studies in the cotton rat model, as well as provides gene sequences for mechanistic characterization of molecular pathways. Overall, our results provide generalizable insights into the effect of host genetics on host-virus interactions, as well as identify new host therapeutic targets for RSV treatment and prevention.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Anticuerpos Antivirales , Modelos Animales de Enfermedad , Queratina-6/genética , Pulmón , Virus Sincitial Respiratorio Humano/genética , Sigmodontinae , Transcriptoma
11.
bioRxiv ; 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-36052371

RESUMEN

Little is known about the relationships between symptomatic early-time SARS-CoV-2 viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate COVID-19. We measured SARS-CoV-2 viral load using qRT-PCR. We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 85% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited co-detection of common respiratory viruses i.e., only the human Rhinovirus (HRV) being identified in 6% of the samples. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusted for age, sex and race. Interestingly, the expression levels of most of these genes plateaued at a CT value of ~25. Overall, our data shows that early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, which potentially could modify COVID-19 outcomes. AUTHOR SUMMARY: Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load and airway mucosal gene expression and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during Spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load with interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load-dependent and may modify COVID-19 outcomes.

12.
Cancers (Basel) ; 14(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35804891

RESUMEN

While the two primary risk factors for head and neck squamous cell carcinoma (HNSCC) are alcohol and tobacco, viruses account for an important and significant upward trend in HNSCC incidence. Human papillomavirus (HPV) is the causative agent for a subset of oropharyngeal squamous cell carcinoma (OPSCC)-a cancer that is impacting a rapidly growing group of typically middle-aged non-smoking white males. While HPV is a ubiquitously present (with about 1% of the population having high-risk oral HPV infection at any one time), less than 1% of those infected with high-risk strains develop OPSCC-suggesting that additional cofactors or coinfections may be required. Epstein-Barr virus (EBV) is a similarly ubiquitous virus that is strongly linked to nasopharyngeal carcinoma (NPC). Both of these viruses cause cellular transformation and chronic inflammation. While dysbiosis of the human microbiome has been associated with similar chronic inflammation and the pathogenesis of mucosal diseases (including OPSCC and NPC), a significant knowledge gap remains in understanding the role of bacterial-viral interactions in the initiation, development, and progression of head and neck cancers. In this review, we utilize the known associations of HPV with OPSCC and EBV with NPC to investigate these interactions. We thoroughly review the literature and highlight how perturbations of the pharyngeal microbiome may impact host-microbiome-tumor-viral interactions-leading to tumor growth.

13.
Influenza Other Respir Viruses ; 16(5): 832-836, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35415869

RESUMEN

The Omicron variant of SARS-CoV-2 achieved worldwide dominance in late 2021. Early work suggests that infections caused by the Omicron variant may be less severe than those caused by the Delta variant. We sought to compare clinical outcomes of infections caused by these two strains, confirmed by whole genome sequencing, over a short period of time, from respiratory samples collected from SARS-CoV-2 positive patients at a large medical center. We found that infections caused by the Omicron variant caused significantly less morbidity, including admission to the hospital and requirement for oxygen supplementation, and significantly less mortality than those caused by the Delta variant.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética
14.
J Allergy Clin Immunol ; 150(3): 612-621, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35283139

RESUMEN

BACKGROUND: The impact of breast-feeding on certain childhood respiratory illnesses remains controversial. OBJECTIVE: We sought to examine the effect of exclusive breast-feeding on the early-life upper respiratory tract (URT) and gut microbiome, the URT immune response in infancy, and the risk of common pediatric respiratory diseases. METHODS: We analyzed data from a birth cohort of healthy infants with prospective ascertainment of breast-feeding patterns and common pediatric pulmonary and atopic outcomes. In a subset of infants, we also characterized the URT and gut microbiome using 16S ribosomal RNA sequencing and measured 9 URT cytokines using magnetic bead-based assays. RESULTS: Of the 1949 infants enrolled, 1495 (76.71%) had 4-year data. In adjusted analyses, exclusive breast-feeding (1) had an inverse dose-response on the ⍺-diversity of the early-life URT and gut microbiome, (2) was positively associated with the URT levels of IFN-α, IFN-γ, and IL-17A in infancy, and (3) had a protective dose-response on the development of a lower respiratory tract infection in infancy, 4-year current asthma, and 4-year ever allergic rhinitis (odds ratio [95% CI] for each 4 weeks of exclusive breast-feeding, 0.95 [0.91-0.99], 0.95 [0.90-0.99], and 0.95 [0.92-0.99], respectively). In exploratory analyses, we also found that the protective association of exclusive breast-feeding on 4-year current asthma was mediated through its impact on the gut microbiome (P = .03). CONCLUSIONS: Our results support a protective causal role of exclusive breast-feeding in the risk of developing a lower respiratory tract infection in infancy and asthma and allergic rhinitis in childhood. They also shed light on potential mechanisms of these associations, including the effect of exclusive breast-feeding on the gut microbiome.


Asunto(s)
Asma , Microbiota , Infecciones del Sistema Respiratorio , Rinitis Alérgica , Asma/epidemiología , Asma/etiología , Lactancia Materna , Niño , Femenino , Humanos , Inmunidad , Lactante , Estudios Prospectivos , Sistema Respiratorio , Infecciones del Sistema Respiratorio/complicaciones , Infecciones del Sistema Respiratorio/epidemiología , Rinitis Alérgica/complicaciones
15.
Int Forum Allergy Rhinol ; 12(9): 1137-1147, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35040594

RESUMEN

BACKGROUND: The nose is the portal for severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection, suggesting the nose as a target for topical antiviral therapies. The purpose of this study was to assess both the in vivo and in vitro efficacy of a detergent-based virucidal agent, Johnson and Johnson's Baby Shampoo (J&J), in SARS-CoV-2-infected subjects. METHODS: Subjects were randomized into three treatment groups: (1) twice daily nasal irrigation with J&J in hypertonic saline, (2) hypertonic saline alone, and (3) no intervention. Complementary in vitro experiments were performed in cultured human nasal epithelia. The primary outcome measure in the clinical trial was change in SARS-CoV-2 viral load over 21 days. Secondary outcomes included symptom scores and change in daily temperature. Outcome measures for in vitro studies included change in viral titers. RESULTS: Seventy-two subjects completed the clinical study (n = 24 per group). Despite demonstrated safety and robust efficacy in in vitro virucidal assays, J&J irrigations had no impact on viral titers or symptom scores in treated subjects relative to controls. Similar findings were observed administering J&J to infected cultured human airway epithelia using protocols mimicking the clinical trial regimen. Additional studies of cultured human nasal epithelia demonstrated that lack of efficacy reflected pharmacokinetic failure, with the most virucidal J&J detergent components rapidly absorbed from nasal surfaces. CONCLUSION: In this randomized clinical trial of subjects with SARS-CoV-2 infection, a topical detergent-based virucidal agent had no effect on viral load or symptom scores. Complementary in vitro studies confirmed a lack of efficacy, reflective of pharmacokinetic failure and rapid absorption from nasal surfaces.


Asunto(s)
COVID-19 , Resfriado Común , Antivirales , Detergentes , Humanos , SARS-CoV-2 , Carga Viral
16.
J Allergy Clin Immunol ; 149(3): 966-976, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34534566

RESUMEN

BACKGROUND: The risk factors determining short- and long-term morbidity following acute respiratory infection (ARI) due to respiratory syncytial virus (RSV) in infancy remain poorly understood. OBJECTIVES: Our aim was to examine the associations of the upper respiratory tract (URT) microbiome during RSV ARI in infancy with the acute local immune response and short- and long-term clinical outcomes. METHODS: We characterized the URT microbiome by 16S ribosomal RNA sequencing and assessed the acute local immune response by measuring 53 immune mediators with high-throughput immunoassays in 357 RSV-infected infants. Our short- and long-term clinical outcomes included several markers of disease severity and the number of wheezing episodes in the fourth year of life, respectively. RESULTS: We found several specific URT bacterial-immune mediator associations. In addition, the Shannon ⍺-diversity index of the URT microbiome was associated with a higher respiratory severity score (ß =.50 [95% CI = 0.13-0.86]), greater odds of a lower ARI (odds ratio = 1.63 [95% CI = 1.10-2.43]), and higher number of wheezing episodes in the fourth year of life (ß = 0.89 [95% CI = 0.37-1.40]). The Jaccard ß-diversity index of the URT microbiome differed by level of care required (P = .04). Furthermore, we found an interaction between the Shannon ⍺-diversity index of the URT microbiome and the first principal component of the acute local immune response on the respiratory severity score (P = .048). CONCLUSIONS: The URT microbiome during RSV ARI in infancy is associated with the acute local immune response, disease severity, and number of wheezing episodes in the fourth year of life. Our results also suggest complex URT bacterial-immune interactions that can affect the severity of the RSV ARI.


Asunto(s)
Microbiota , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Humanos , Lactante , Ruidos Respiratorios/etiología , Sistema Respiratorio , Infecciones del Sistema Respiratorio/complicaciones
17.
Dig Dis ; 40(3): 345-354, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34315165

RESUMEN

BACKGROUND: Esophageal conditions result in significant morbidity and mortality worldwide. There is growing enthusiasm for discerning the role of microbiome in esophageal diseases. Conceivably, the focus has been on examining the role of local microbiome in esophageal diseases although this is somewhat limited by the invasive approach required to sample the esophageal tissue. Given the ease of sampling the oral cavity combined with the advances in genomic techniques, there is immense interest in discovering the role of the oral microbiome in esophageal conditions. SUMMARY: In this review, we aim to discuss the current evidence highlighting the association between the oral microbiome and esophageal diseases. In particular, we have focused on summarizing the alterations in oral microbiome associated with malignant, premalignant, and benign esophageal cancers, inflammatory and infectious conditions, and esophageal dysmotility diseases. Identifying alterations in the oral microbiome is a key to advancing our understanding of the etiopathogenesis and progression of esophageal diseases, promoting novel diagnostics, and laying the foundation for personalized treatment approaches. KEY MESSAGES: Further studies are needed to unravel the mechanisms by which the oral microbiome influences the development and progression of esophageal diseases, as well as to investigate whether alterations in the oral microbiome can impact the natural history of various esophageal diseases.


Asunto(s)
Esófago de Barrett , Enfermedades del Esófago , Neoplasias Esofágicas , Microbiota , Lesiones Precancerosas , Esófago de Barrett/patología , Enfermedades del Esófago/complicaciones , Neoplasias Esofágicas/patología , Humanos , Lesiones Precancerosas/patología
18.
Cell Rep Methods ; 1(6)2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34790908

RESUMEN

We developed a metatranscriptomics method that can simultaneously capture the respiratory virome, microbiome, and host response directly from low biomass samples. Using nasal swab samples, we capture RNA virome with sufficient sequencing depth required to assemble complete genomes. We find a surprisingly high frequency of respiratory syncytial virus (RSV) and coronavirus (CoV) in healthy children, and a high frequency of RSV-A and RSV-B co-detections in children with symptomatic RSV. In addition, we have identified commensal and pathogenic bacteria and fungi at the species level. Functional analysis revealed that H. influenzae was highly active in symptomatic RSV subjects. The host nasal transcriptome reveled upregulation of the innate immune system, anti-viral response and inflammasome pathway, and downregulation of fatty acid pathways in children with symptomatic RSV. Overall, we demonstrate that our method is broadly applicable to infer the transcriptome landscape of an infected system, surveil respiratory infections, and to sequence RNA viruses directly from clinical samples.


Asunto(s)
Microbiota , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Humanos , Infecciones por Virus Sincitial Respiratorio/genética , Viroma/genética , Virus Sincitial Respiratorio Humano/genética , Microbiota/genética , Transcriptoma/genética
19.
Front Physiol ; 12: 731034, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566693

RESUMEN

Background: Our understanding of human gut microbiota has expanded in recent years with the introduction of high-throughput sequencing methods. These technologies allow for the study of metagenomic, metatranscriptomic, and metabolomic bacterial alterations as they relate to human disease. Work in this area has described the human gut microbiome in both healthy individuals and those with chronic gastrointestinal diseases, such as eosinophilic esophagitis (EoE). Objectives: A systematic review of the current available literature on metagenomic, metatranscriptomic, and metabolomic changes in EoE was performed. Methods: This review was performed following the PRISMA guidelines for reporting systematic reviews and meta-analyses. All relevant publications up to March 2021 were retrieved using the search engines PubMed, Google Scholar, and Web of Science. They were then extracted, assessed, and reviewed. Only original studies published in English were included. Results: A total of 46 potential manuscripts were identified for review. Twelve met criteria for further review based on relevance screening and 9 met criteria for inclusion, including 6 studies describing the microbiome in EoE and 3 detailing metabolomic/tissue biochemistry alterations in EoE. No published studies examined metatranscriptomic changes. Samples for microbiome analysis were obtained via esophageal biopsy (n = 3), esophageal string test (n = 1), salivary sampling (n = 1), or stool specimen (n = 1). Samples analyzing tissue biochemistry were obtained via esophageal biopsy (n = 2) and blood plasma (n = 1). There were notable differences in how samples were collected and analyzed. Metabolomic and tissue biochemical alterations were described using Raman spectroscopy, which demonstrated distinct differences in the spectral intensities of glycogen, lipid, and protein content compared to controls. Finally, research in proteomics identified an increase in the pro-fibrotic protein thrombospondin-1 in patients with EoE compared with controls. Conclusions: While there are notable changes in the microbiome, these differ with the collection technique and method of analysis utilized. Techniques characterizing metabolomics and tissue biochemistry are now being utilized to further study patients with EoE. The lack of published data related to the human microbiome, metagenome, metatranscriptome, and metabolome in patients with EoE highlights the need for further research in these areas.

20.
Pathog Immun ; 6(2): 27-49, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34541432

RESUMEN

BACKGROUND: Genetic variations across the SARS-CoV-2 genome may influence transmissibility of the virus and the host's anti-viral immune response, in turn affecting the frequency of variants over time. In this study, we examined the adjacent amino acid polymorphisms in the nucleocapsid (R203K/G204R) of SARS-CoV-2 that arose on the background of the spike D614G change and describe how strains harboring these changes became dominant circulating strains globally. METHODS: Deep-sequencing data of SARS-CoV-2 from public databases and from clinical samples were analyzed to identify and map genetic variants and sub-genomic RNA transcripts across the genome. Results: Sequence analysis suggests that the 3 adjacent nucleotide changes that result in the K203/R204 variant have arisen by homologous recombination from the core sequence of the leader transcription-regulating sequence (TRS) rather than by stepwise mutation. The resulting sequence changes generate a novel sub-genomic RNA transcript for the C-terminal dimerization domain of nucleocapsid. Deep-sequencing data from 981 clinical samples confirmed the presence of the novel TRS-CS-dimerization domain RNA in individuals with the K203/R204 variant. Quantification of sub-genomic RNA indicates that viruses with the K203/R204 variant may also have increased expression of sub-genomic RNA from other open reading frames. CONCLUSIONS: The finding that homologous recombination from the TRS may have occurred since the introduction of SARS-CoV-2 in humans, resulting in both coding changes and novel sub-genomic RNA transcripts, suggests this as a mechanism for diversification and adaptation within its new host.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...