Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(9): 3900-3913, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35388744

RESUMEN

SARS-CoV-2 Mpro is one of the most vital enzymes of the new coronavirus-2 (SARS-CoV-2) and is a crucial target for drug discovery. Unfortunately, there is not any potential drugs available to combat the action of SARS-CoV-2 Mpro. Based on the reports HIV-protease inhibitors can be applied against the SARS by targeting the SARS-CoV-1 Mpro, we have chosen few clinically trialed experimental and allophenylnorstatine (APNS) containing HIV-protease inhibitors (JE-2147, JE-533, KNI-227, KNI-272 & KNI-1931), to examine their binding affinities with SARS-CoV-2 Mpro and to assess their potential to check for a possible drug candidate against the protease. Here, we have chosen a methodology to understand the binding mechanism of these five inhibitors to SARS-CoV-2 Mpro by merging molecular docking, molecular dynamics (MD) simulation and MM-PBSA based free energy calculations. Our estimations disclose that JE-2147 is highly effective (ΔGBind = -28.31 kcal/mol) due to an increased favorable van der Waals (ΔEvdw) interactions and decreased solvation (ΔGsolv) energies between the inhibitor and viral protease. JE-2147 shows a higher level of interactions as compared to JE-533 (-6.85 kcal/mol), KNI-227 (-18.36 kcal/mol), KNI-272 (-15.69 kcal/mol) and KNI-1931 (-21.59 kcal/mol) against SARS-CoV-2 Mpro. Binding contributions of important residues (His41, Met49, Cys145, His164, Met165, Glu166, Pro168, Gln189, etc.) from the active site or near the active site regions with ≥1.0 kcal/mol suggest a potent binding of the inhibitors. It is anticipated that the current study of binding interactions of these APNS containing inhibitors can pitch some valuable insights to design the significantly effective anti-SARS-CoV-2 Mpro drugs.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Infecciones por VIH , Inhibidores de la Proteasa del VIH , Humanos , Reposicionamiento de Medicamentos , Inhibidores de la Proteasa del VIH/farmacología , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Endopeptidasas , Péptido Hidrolasas , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología
2.
Appl Biochem Biotechnol ; 193(6): 1654-1674, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33620666

RESUMEN

Suitable recognition of invasive microorganisms is a crucial factor for evoking a strong immune response that can combat the pathogen. Toll-like receptors (TLRs) play a pivotal role in the induction of this innate immune response through stimulation of interferons (IFNs) that control viral replication in the host via distinct signaling pathways. Though the antiviral property of Atropa belladonna has been established, yet the role of one of its active components scopolamine in modulating various factors of the innate immune branch has not yet been investigated until date. Thus, the present study was conducted to assess the antiviral effects of scopolamine and its immunomodulatory role against Japanese encephalitis virus (JEV) infections in embryonated chick. Pre-treatment with scopolamine hydrobromide showed a significant decrease in the viral loads of chorioallantoic membrane (CAM) and brain tissues. Molecular docking analysis revealed that scopolamine hydrobromide binds to the active site of non-structural protein 5 (NS5) that has enzymatic activities required for replication of JEV, making it a highly promising chemical compound against the virus. The binding contributions of different amino acid residues at or near the active site suggest a potential binding of this compound. Pre-treatment with the scopolamine hydrobromide showed significant upregulation of different TLRs like TLR3, TLR7, and TLR8, interleukins like IL-4, and IL-10, as well as IFNs and their regulatory factors. However, virus-infected tissues (direct infection group) exhibited higher TLR4 expression as compared to scopolamine hydrobromide pre-treated, virus-infected tissues (medicine pre-treated group). These results indicate that scopolamine hydrobromide contributes much to launch antiviral effects by remoulding the TLR and IFN signaling pathways that are involved in sensing and initiating the much-needed anti-JEV responses.


Asunto(s)
Proteínas Aviares/metabolismo , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/tratamiento farmacológico , Escopolamina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Atropa belladonna/química , Embrión de Pollo , Encefalitis Japonesa/metabolismo , Escopolamina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...