Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(8): e29686, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38681642

RESUMEN

Monocytes and macrophages are essential components of innate immune system and have versatile roles in homeostasis and immunity. These phenotypically distinguishable mononuclear phagocytes play distinct roles in different stages, contributing to the pathophysiology in various forms making them a potentially attractive therapeutic target in inflammatory conditions. Several pieces of evidence have supported the role of different cell surface receptors expressed on these cells and their downstream signaling molecules in initiating and perpetuating the inflammatory response. In this review, we discuss the current understanding of the monocyte and macrophage biology in inflammation, highlighting the role of chemoattractants, inflammasomes, and integrins in the function of monocytes and macrophages during events of inflammation. This review also covers the recent therapeutic interventions targeting these mononuclear phagocytes at the cellular and molecular levels.

2.
J Immunol ; 207(11): 2841-2855, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34732468

RESUMEN

Monocytes and macrophages participate in both pro- and anti-inflammatory responses during sepsis. Integrins are the cell adhesion receptors that mediate leukocyte migration and functions. To date, it is not known whether integrin profiles correlate with their trafficking, differentiation, and polarization during sepsis. In this study, using endotoxemia and cecal ligation and puncture model of murine sepsis, we have analyzed the role of surface integrins in tissue-specific infiltration, distribution of monocytes and macrophages, and their association with inflammation-induced phenotypic and functional alterations postinduction (p.i.) of sepsis. Our data show that Ly-6Chi inflammatory monocytes infiltrated into the peritoneum from blood and bone marrow within a few hours p.i. of sepsis, with differential distribution of small (Ly-6CloCD11bloF4/80lo) and large peritoneal macrophages (Ly-6CloCD11bhiF4/80hi) in both models. The results from flow cytometry studies demonstrated a higher expression of integrin α4ß1 on the Ly-6Chi monocytes in different tissues, whereas macrophages in the peritoneum and lungs expressed higher levels of integrin α5ß1 and αvß3 in both models. Additionally, F4/80+ cells with CD206hiMHCIIlo phenotype increased in the lungs of both models by six hours p.i. and expressed higher levels of integrin αvß3 in both lungs and peritoneum. The presence of such cells correlated with higher levels of IL-10 and lower levels of IL-6 and IL-1ß transcripts within six hours p.i. in the lungs compared with the mesentery. Furthermore, bioinformatic analysis with its experimental validation revealed an association of integrin α4 and α5 with inflammatory (e.g., p-SRC) and integrin αv with regulatory molecules (e.g., TGFBR1) in macrophages during sepsis.


Asunto(s)
Inflamación/inmunología , Integrinas/genética , Macrófagos/inmunología , Monocitos/inmunología , Sepsis/inmunología , Animales , Perfilación de la Expresión Génica , Integrinas/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Propiedades de Superficie
3.
Mediators Inflamm ; 2021: 6655412, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628114

RESUMEN

Systematic regulation of leukocyte migration to the site of infection is a vital step during immunological responses. Improper migration and localization of immune cells could be associated with disease pathology as seen in systemic inflammation. Rho GTPases act as molecular switches during inflammatory cell migration by cycling between Rho-GDP (inactive) to Rho-GTP (active) forms and play an essential role in the precise regulation of actin cytoskeletal dynamics as well as other immunological functions of leukocytes. Available reports suggest that the dysregulation of Rho GTPase signaling is associated with various inflammatory diseases ranging from mild to life-threatening conditions. Therefore, it is crucial to understand the step-by-step activation and inactivation of GTPases and the functioning of different Guanine Nucleotide Exchange Factors (GEFs) and GTPase-Activating Proteins (GAPs) that regulate the conversion of GDP to GTP and GTP to GDP exchange reactions, respectively. Here, we describe the molecular organization and activation of various domains of crucial elements associated with the activation of Rho GTPases using solved PDB structures. We will also present the latest evidence available on the relevance of Rho GTPases in the migration and function of innate immune cells during inflammation. This knowledge will help scientists design promising drug candidates against the Rho-GTPase-centric regulatory molecules regulating inflammatory cell migration.


Asunto(s)
Proteínas de Unión al GTP rho/metabolismo , Animales , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/genética
4.
Crit Rev Microbiol ; 47(3): 307-322, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33570448

RESUMEN

The ongoing COVID-19 pandemic has made us wonder what led to its occurrence and what can be done to avoid such events in the future. As we document, one changing circumstance that is resulting in the emergence and changing the expression of viral diseases in both plants and animals is climate change. Of note, the rapidly changing environment and weather conditions such as excessive flooding, droughts, and forest fires have raised concerns about the global ecosystem's security, sustainability, and balance. In this review, we discuss the main consequences of climate change and link these to how they impact the appearance of new viral pathogens, how they may facilitate transmission between usual and novel hosts, and how they may also affect the host's ability to manage the infection. We emphasize how changes in temperature and humidity and other events associated with climate change influence the reservoirs of viral infections, their transmission by insects and other intermediates, their survival outside the host as well the success of infection in plants and animals. We conclude that climate change has mainly detrimental consequences for the emergence, transmission, and outcome of viral infections and plead the case for halting and hopefully reversing this dangerous event.


Asunto(s)
COVID-19/transmisión , Cambio Climático , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades de las Plantas/virología , Virosis/transmisión , Animales , Organismos Acuáticos/virología , COVID-19/complicaciones , COVID-19/etiología , COVID-19/inmunología , Quirópteros/virología , Enfermedades Transmisibles Emergentes/complicaciones , Enfermedades Transmisibles Emergentes/etiología , Enfermedades Transmisibles Emergentes/inmunología , Productos Agrícolas/virología , Reservorios de Enfermedades/virología , Vectores de Enfermedades/clasificación , Abastecimiento de Alimentos , Humanos , Humedad , Enfermedades de las Plantas/inmunología , Enfermedades de los Primates/transmisión , Enfermedades de los Primates/virología , Primates , Lluvia , Estaciones del Año , Temperatura , Virosis/complicaciones , Virosis/etiología , Virosis/inmunología
5.
FEBS J ; 288(3): 803-817, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32297473

RESUMEN

Recent reports have shown that a C-terminal fragment of adhesion protein Fibulin7 (Fbln7-C) could demonstrate both antiangiogenic and anti-inflammatory activities. The current study investigated the potential of Fbln7-C as a modulator of tumor-associated macrophages (TAMs) and its potential as an anticancer therapeutic. Our in vitro data show that Fbln7-C could inhibit the tumor cell line (MDA-MB-231) supernatant-induced reprogramming of human monocytes into immunosuppressive TAMs as indicated by higher expression of pERK1/2 and pSTAT1 molecules, and reduced expression of CD206 protein and arg1, ido, and vegf transcripts in monocytes cultured in the presence of Fbln7-C compared to controls. Interestingly, Fbln7-C-treated macrophages retained their altered phenotype even after the removal of Fbln7-C, and their secretome demonstrated anticancer activities. Finally, in a 4T1-induced murine breast tumor model, intravenous administration of Fbln7-C, following the appearance of measurable tumors, significantly reduced the growth and weight of the tumors. Detailed phenotypic analysis of the infiltrated monocyte/macrophage populations (F480+ Ly6G- CD11b+ ) at day 23 postinduction showed a higher percentage of inflammatory monocytes (F480+ Ly6Chi CD11b+ ) and a delayed differentiation into anti-inflammatory TAMs as evident by their reduced levels of CD206 expression. In conclusion, the above data suggest that Fbln7-C could regulate the tumor environment-induced macrophage reprogramming and has the potential for cancer therapeutics.


Asunto(s)
Proteínas de Unión al Calcio/genética , Reprogramación Celular/genética , Regulación Neoplásica de la Expresión Génica , Macrófagos/metabolismo , Neoplasias Mamarias Experimentales/genética , Animales , Proteínas de Unión al Calcio/metabolismo , Diferenciación Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Activación de Macrófagos/genética , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones Endogámicos BALB C , Monocitos/metabolismo , Transducción de Señal/genética
6.
Mol Med ; 26(1): 47, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32429873

RESUMEN

Fibulins are a family of secreted glycoproteins, which play an important role in regulating multiple cellular functions such as adhesion, growth, motility, and survival. Fibulin7 (Fbln7) is expressed in developing odontoblasts, in the giant trophoblast layer of the placenta, in the choroid of the eyes as well as in the cartilage. Since its discovery, reports from various research groups have improved our understanding about the roles and effects of Fbln7 and Fbln7 derived fragments and peptides under physiological and pathological conditions such as tooth development, angiogenesis, immunoregulation, cancer pathogenesis and very recently as a possible biomarker for glaucoma. This review will highlight the latest developments in our understanding of the functions, the proposed mechanism of actions, and Fbln7's possible implications in future research and as therapeutics for different diseases.


Asunto(s)
Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Susceptibilidad a Enfermedades , Homeostasis , Animales , Proteínas de Unión al Calcio/química , Regulación de la Expresión Génica , Humanos , Especificidad de Órganos , Transducción de Señal
7.
Cytokine ; 131: 155113, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32388247

RESUMEN

Accumulation of hyperactive neutrophils in the visceral organs was shown to be associated with sepsis-induced multi-organ failure. Recently, a C-terminal fragment of secreted glycoprotein Fibulin7 (Fbln7-C) was shown to inhibit angiogenesis and regulate monocyte functions in inflammatory conditions. However, its effects on neutrophil functions and systemic inflammation induced lethality remain unknown. In this study, we show that human peripheral blood neutrophils adhered to Fbln7-C in a dose-dependent manner via integrin ß1. Moreover, the presence of Fbln7-C inhibited spreading, and fMLP mediated random migration of neutrophils on fibronectin. Significant reduction in ROS and inflammatory cytokine production (i.e., IL-6, IL-1ß) was observed, including a reduction in ERK1/2 phosphorylation in neutrophils stimulated with LPS and fMLP in the presence of Fbln7-C compared to untreated controls. In an in vivo model of endotoxemia, the administration of Fbln7-C (10 µg/dose) significantly improved survival and reduced the infiltration of neutrophils to the site of inflammation. Additionally, neutrophils infiltrating into the inflamed peritoneum of Fbln7-C administered animals expressed lower levels CD11b marker, IL-6, and produced lower levels of ROS upon stimulation with PMA compared to untreated controls. In conclusion, our results show that Fbln7-C could bind to the integrin ß1 on the neutrophil surface and regulate their inflammatory functions.


Asunto(s)
Proteínas de Unión al Calcio/química , Movimiento Celular/efectos de los fármacos , Endotoxemia/tratamiento farmacológico , Neutrófilos/efectos de los fármacos , Animales , Proteínas de Unión al Calcio/metabolismo , Citocinas/biosíntesis , Endotoxemia/inducido químicamente , Endotoxemia/mortalidad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibronectinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Integrina beta1/metabolismo , Lipopolisacáridos , Masculino , Ratones Endogámicos C57BL , Neutrófilos/enzimología , Neutrófilos/metabolismo
8.
Inflammation ; 43(2): 641-650, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31838662

RESUMEN

Macrophages exist in various functional phenotypes, which could be identified by specific surface molecules. Previous studies have shown that modulation of surface charges could alter the phagocytic function of macrophages. In this study, we show that activation of both human peripheral blood monocyte and THP-1-derived macrophages with lipopolysaccharide (LPS) or IL-1ß resulted in a significant decrease in the zeta potential compared to freshly isolated monocytes and unstimulated macrophages. Interestingly, interaction with bacteria significantly increased the zeta potential of such cells irrespective of activation conditions. Similarly, IFNγ-treated pro-inflammatory macrophages showed lesser negative zeta potential compared to untreated control. A moderate reduction was also seen in IL-4-treated anti-inflammatory subtype. Additionally, in an LPS-induced systemic inflammation model, bone marrow cells isolated after 2 h of LPS injection showed significant reduction in zeta potential compared to naïve cells. Furthermore, electrostatic potential measurement of surface proteins associated with pro-inflammatory and anti-inflammatory macrophages, using in silico modeling under physiological and protonation conditions, showed that the average electrostatic potential of pro-inflammatory type surface proteins was less negative than anti-inflammatory subtype. These data suggest that the expression of different protein molecules on macrophages under different environments may contribute to the zeta potential and that this quick and low-cost technique could be used in monitoring macrophage functional phenotypes.


Asunto(s)
Mediadores de Inflamación/metabolismo , Macrófagos/metabolismo , Fenotipo , Electricidad Estática , Animales , Células Cultivadas , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Propiedades de Superficie , Células THP-1
9.
Inflammation ; 42(6): 2020-2031, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31376095

RESUMEN

Extracellular matrix (ECM) proteins form the structural support for migration of leukocytes and provide multiple signals to assist in their functions during inflammatory conditions. Presence of pro-inflammatory mediators in the tissues results in the remodelling of matrices which could modify the functions of extravasated leukocytes. Previous reports have shown changes in the expression of ECM proteins during local inflammatory responses. In this study, we have investigated the time- and tissue-specific expression profile of key ECM proteins in systemic inflammation using lipopolysaccharide (LPS)-induced endotoxemia and cecal ligation and puncture (CLP) mouse models. The results show that compared to naïve tissues, within 12 h following CLP surgery, a 20-30-fold increase was observed in the expression of collagen-IV (Col-IV) transcripts in the mesentery tissues with a 2.4-fold increase in the protein by 24 h. However, Western blot band intensities indicated that vimentin and fibrinogen were remarkably expressed in more quantity compared to Col-IV. Secondly, in CLP group of mice, fibrinogen showed 6-40-fold increase in mRNA level in various tissues with about 2-fold increase in the protein level compared to respective naïve tissues. Similar studies in the LPS-injected mice showed up to 2-3 fold increase in the expression of Col-IV, fibrinogen and vimentin at protein level in the lungs. In such animals, although similar pattern was observed for fibrinogen in kidney and liver tissues, the mesentery showed prominent changes in Col-IV and vimentin mRNA compared to CLP. Further, bioinformatics analysis showed multiple pathways which could be associated with vimentin, Col-IV and fibrinogen under inflammatory conditions both in human and mouse. The current study will help in better understanding of possible signalling from ECM proteins in inflammatory microenvironment and may contribute in development of cell adhesion-based therapeutics.


Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Inflamación/metabolismo , Animales , Colágeno Tipo IV/metabolismo , Modelos Animales de Enfermedad , Endotoxemia , Fibrinógeno/metabolismo , Ratones , Punciones , ARN Mensajero/metabolismo , Factores de Tiempo , Distribución Tisular , Vimentina/metabolismo
10.
FASEB J ; 32(9): 4889-4898, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29634368

RESUMEN

Fibulin-7 (Fbln7) has been identified as the latest member of the fibulin family of secreted glycoproteins in developing teeth, functioning as a cell adhesion molecule and interacting with other matrix proteins, receptors, and growth factors. More recently, we have shown that the C-terminal Fbln7 fragment (Fbln7-C) has antiangiogenic activity in vitro. Fbln7 is also expressed in immune-privileged tissues, such as eye and placenta, but its functional significance is unknown. In the current study, we show that human monocytes adhere to both full-length Fbln7 (Fbln7-FL) and Fbln7-C, in part, via integrins α5ß1 and α2ß1. Morphologic studies and surface expression analyses of CD14, mannose receptor (CD206), major histocompatibility complex II, and CD11b receptors revealed that both Fbln7-FL and Fbln7-C inhibit M-CSF-induced monocyte differentiation. Fbln7-C had significantly greater negative effects on cell spreading and stress fiber formation, including the production of IL-6 and metalloproteinase-1/-9 compared with Fbln7-FL. Furthermore, in an LPS-induced systemic inflammation model, Fbln7-C and Fbln7-FL reduced the infiltration of immune cells, such as neutrophils and macrophages, to the inflamed peritoneum. Thus, these results suggest that Fbln7 and Fbln7-C could modulate the activity of immune cells and have therapeutic potential for inflammatory diseases.-Sarangi, P. P., Chakraborty, P., Dash, S. P., Ikeuchi, T., de Vega, S., Ambatipudi, K., Wahl, L., Yamada, Y. Cell adhesion protein fibulin-7 and its C-terminal fragment negatively regulate monocyte and macrophage migration and functions in vitro and in vivo.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Adhesión Celular/fisiología , Macrófagos/metabolismo , Monocitos/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Células Cultivadas , Humanos , Lectinas Tipo C/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Receptor de Manosa , Lectinas de Unión a Manosa/metabolismo , Ratones Endogámicos C57BL , Monocitos/efectos de los fármacos , Neutrófilos/metabolismo , Receptores de Superficie Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...