Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 8(17): 8908-8920, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30271554

RESUMEN

In a world of declining biodiversity, monitoring is becoming crucial. Molecular methods, such as metabarcoding, have the potential to rapidly expand our knowledge of biodiversity, supporting assessment, management, and conservation. In the marine environment, where hard substrata are more difficult to access than soft bottoms for quantitative ecological studies, Artificial Substrate Units (ASUs) allow for standardized sampling. We deployed ASUs within five regional seas (Baltic Sea, Northeast Atlantic Ocean, Mediterranean Sea, Black Sea, and Red Sea) for 12-26 months to measure the diversity and community composition of macroinvertebrates. We identified invertebrates using a traditional approach based on morphological characters, and by metabarcoding of the mitochondrial cytochrome oxidase I (COI) gene. We compared community composition and diversity metrics obtained using the two methods. Diversity was significantly correlated between data types. Metabarcoding of ASUs allowed for robust comparisons of community composition and diversity, but not all groups were successfully sequenced. All locations were significantly different in taxonomic composition as measured with both kinds of data. We recovered previously known regional biogeographical patterns in both datasets (e.g., low species diversity in the Black and Baltic Seas, affinity between the Bay of Biscay and the Mediterranean). We conclude that the two approaches provide complementary information and that metabarcoding shows great promise for marine monitoring. However, until its pitfalls are addressed, the use of metabarcoding in monitoring of rocky benthic assemblages should be used in addition to classical approaches rather than instead of them.

2.
Anal Bioanal Chem ; 396(2): 641-7, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19937003

RESUMEN

Benzotriazoles (BT) are applied as anticorrosive and de-icing agents and have been detected in a variety of aquatic ecosystems and municipal wastewater effluents. We have assessed the developmental effects of benzotriazole (CAS number 95-14-7) to the marine invertebrate Ciona intestinalis (Chordata, Ascidiae). At 15 +/- 1 degrees C, the 24 h No-Observed Effect Concentration (NOEC) and Lowest Observed Effect Concentration (LOEC) values based on embryo morphological development were 100 and >100 mg L(-1), respectively (nominal concentration under static conditions). After 48 h, the NOEC and LOEC values were 10 and 32 mg L(-1), respectively. Light and electron microscopy studies on benzotriazole-exposed larva indicated that the primary target cells were the extra-embryonic test cells, which are known to play a significant apoptotic role during ascidian metamorphosis. The visible decline of test cells in benzotriazole-exposed larvae raises the possibility that the compound interferes with the regulation of embryo development in protochordates such as C. intestinalis. Further research is warranted to assess the potential longer term sublethal impacts of benzotriazole in aquatic organisms.


Asunto(s)
Ciona intestinalis/efectos de los fármacos , Ciona intestinalis/embriología , Triazoles/toxicidad , Animales , Ciona intestinalis/crecimiento & desarrollo , Larva/efectos de los fármacos , Larva/crecimiento & desarrollo , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...