Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Crit Rev Microbiol ; 50(2): 127-137, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36597758

RESUMEN

The cause of Alzheimer's disease (AD), and the pathophysiological mechanisms involved, remain major unanswered questions in medical science. Oral bacteria, especially those species associated with chronic periodontitis and particularly Porphyromonas gingivalis, are being linked causally to AD pathophysiology in a subpopulation of susceptible individuals. P. gingivalis produces large amounts of proteolytic enzymes, haem and iron capture proteins, adhesins and internalins that are secreted and attached to the cell surface and concentrated onto outer membrane vesicles (OMVs). These enzymes and adhesive proteins have been shown to cause host tissue damage and stimulate inflammatory responses. The ecological and pathophysiological roles of P. gingivalis OMVs, their ability to disperse widely throughout the host and deliver functional proteins lead to the proposal that they may be the link between a P. gingivalis focal infection in the subgingivae during periodontitis and neurodegeneration in AD. P. gingivalis OMVs can cross the blood brain barrier and may accelerate AD-specific neuropathology by increasing neuroinflammation, plaque/tangle formation and dysregulation of iron homeostasis, thereby inducing ferroptosis leading to neuronal death and neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Periodontitis , Humanos , Porphyromonas gingivalis/genética , Adhesinas Bacterianas/metabolismo , Periodontitis/microbiología , Hierro
2.
J Alzheimers Dis ; 91(1): 129-150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36404545

RESUMEN

BACKGROUND: Pre-clinical evidence implicates oral bacteria in the pathogenesis of Alzheimer's disease (AD), while clinical studies show diverse results. OBJECTIVE: To comprehensively assess the association between oral bacteria and AD with clinical evidence. METHODS: Studies investigating the association between oral bacteria and AD were identified through a systematic search of six databases PubMed, Embase, Cochrane Central Library, Scopus, ScienceDirect, and Web of Science. Methodological quality ratings of the included studies were performed. A best evidence synthesis was employed to integrate the results. When applicable, a meta-analysis was conducted using a random-effect model. RESULTS: Of the 16 studies included, ten investigated periodontal pathobionts and six were microbiome-wide association studies. Samples from the brain, serum, and oral cavity were tested. We found over a ten-fold and six-fold increased risk of AD when there were oral bacteria (OR = 10.68 95% CI: 4.48-25.43; p < 0.00001, I2 = 0%) and Porphyromonas gingivalis (OR = 6.84 95% CI: 2.70-17.31; p < 0.0001, I2 = 0%) respectively in the brain. While AD patients exhibited lower alpha diversity of oral microbiota than healthy controls, the findings of bacterial communities were inconsistent among studies. The best evidence synthesis suggested a moderate level of evidence for an overall association between oral bacteria and AD and for oral bacteria being a risk factor for AD. CONCLUSION: Current evidence moderately supports the association between oral bacteria and AD, while the association was strong when oral bacteria were detectable in the brain. Further evidence is needed to clarify the interrelationship between both individual species and bacterial communities and the development of AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Microbiota , Humanos , Enfermedad de Alzheimer/microbiología , Factores de Riesgo , Porphyromonas gingivalis
3.
J Oral Microbiol ; 14(1): 2096287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832839

RESUMEN

Background: Human microbiomes assemble in an ordered, reproducible manner yet there is limited information about early colonisation and development of bacterial communities that constitute the oral microbiome. Aim: The aim of this study was to determine the effect of exposure to breastmilk on assembly of the infant oral microbiome during the first 20 months of life. Methods: The oral microbiomes of 39 infants, 13 who were never breastfed and 26 who were breastfed for more than 10 months, from the longitudinal VicGeneration birth cohort study, were determined at four ages. In total, 519 bacterial taxa were identified and quantified in saliva by sequencing the V4 region of the bacterial 16S rRNA genes. Results: There were significant differences in the development of the oral microbiomes of never breastfed and breastfed infants. Bacterial diversity was significantly higher in never breastfed infants at 2 months, due largely to an increased abundance of Veillonella and species from the Bacteroidetes phylum compared with breastfed infants. Conclusion: These differences likely reflect breastmilk playing a prebiotic role in selection of early-colonising, health-associated oral bacteria, such as the Streptococcus mitis group. The microbiomes of both groups became more heterogenous following the introduction of solid foods.

4.
Crit Rev Microbiol ; 48(6): 730-742, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35015598

RESUMEN

The human oral microbiome is becoming recognized as playing roles in health and disease well beyond the oral cavity over the lifetime of the individual. The oral microbiome is hypothesized to result from specific colonization events followed by a reproducible and ordered development of complex bacterial communities. Colonization events, proliferation, succession and subsequent community development are dependent on a range of host and environmental factors, most notably the neonate diet. It is now becoming apparent that early childhood and prenatal influences can have long term effects on the development of human oral microbiomes. In this review, the temporal development of the infant human oral microbiome is examined, with the effects of prenatal and postnatal influences and the roles of specific bacteria. Dietary and environmental factors, especially breastfeeding, have a significant influence on the development of the infant oral microbiome. The evidence available regarding the roles and functions of early colonizing bacteria is still limited, and gaps in knowledge where further research is needed to elucidate these specific roles in relation to health and disease still exist.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Lactante , Recién Nacido , Embarazo , Femenino , Humanos , Preescolar , Bacterias/genética , Boca/microbiología , Lactancia Materna
5.
BMJ Open ; 11(3): e043221, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33722869

RESUMEN

INTRODUCTION: Research has highlighted relationships between the micro-organisms that inhabit our gastrointestinal tract (oral and gut microbiota) with host mood and gastrointestinal functioning. Mental health disorders and functional gastrointestinal disorders co-occur at high rates, although the mechanisms underlying these associations remain unclear. The Bugs and Brains Study aims to investigate complex relationships between anxiety/depression and irritable bowel syndrome (IBS) in two ways. First, its primary component will compare the gut and oral microbiota in females with anxiety/depression and/or IBS relative to controls, and investigate underlying physiological, endocrine and immune factors, as well as associations with diet and psychosocial factors. In an ancillary component, the study will also investigate gastrointestinal and mental health symptoms in a larger sample, and explore relationships with diet, exercise, oral health, substance use, medical history, early life adversity and psychosocial factors. METHODS AND ANALYSIS: The Bugs and Brains Study aims to recruit 160 females to the primary component: (1) 40 controls; (2) 40 participants with a depressive/anxiety disorder, but no IBS; (3) 40 participants with IBS, but no depressive/anxiety disorder and (4) 40 participants with both depressive/anxiety disorder and IBS. Participation is completed within 1 month, and involves comprehensive questionnaires, anthropometrics, a diagnostic clinical interview, collection of two saliva samples, and stool, urine and hair samples. This study aims to use a systems biology approach to characterise oral and gut microbial composition and function using 16S rRNA gene sequencing and nuclear MR spectroscopy. As part of the ancillary component, it will collect questionnaire data from 1000 participants aged 18-40 years, capturing mental health, gastrointestinal health, oral health, diet and psychosocial factors. ETHICS AND DISSEMINATION: Approval was granted by the University of Melbourne Human Research Ethics Committee (#1749221). All participants voluntarily provided informed consent. Results will be published in peer-reviewed journals and presented at scientific conferences.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Microbiota , Adolescente , Adulto , Ansiedad , Trastornos de Ansiedad , Depresión , Femenino , Humanos , Salud Mental , ARN Ribosómico 16S , Adulto Joven
6.
J Oral Microbiol ; 12(1): 1808750, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32944158

RESUMEN

BACKGROUND:  Porphyromonas gingivalis and Treponema denticola are proteolytic periodontopathogens that co-localize in polymicrobial subgingival plaque biofilms, display in vitro growth symbiosis and synergistic virulence in animal models of disease. These symbioses are underpinned by a range of metabolic interactions including cooperative hydrolysis of glycine-containing peptides to produce free glycine, which T. denticola uses as a major energy and carbon source. OBJECTIVE:  To characterize the P. gingivalis gene products essential for these interactions. Methods: The P. gingivalis transcriptome exposed to cell-free T. denticola conditioned medium was determined using RNA-seq. P. gingivalis proteases potentially involved in hydrolysis of glycine-containing peptides were identified using a bioinformatics approach. RESULTS:  One hundred and thirty-twogenes displayed differential expression, with the pattern of gene expression consistent with succinate cross-feeding from T. denticola to P. gingivalis and metabolic shifts in the P. gingivalis folate-mediated one carbon superpathway. Interestingly, no P. gingivalis proteases were significantly up-regulated. Three P. gingivalis proteases were identified as candidates and inactivated to determine their role in the release of free glycine. P. gingivalis PG0753 and PG1788 but not PG1605 are involved in the hydrolysis of glycine-containing peptides, making free glycine available for T. denticola utilization. CONCLUSION:  Collectively these metabolic interactions help to partition resources and engage synergistic interactions between these two species.

7.
Physiol Behav ; 226: 113126, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32777312

RESUMEN

PURPOSE: Depression and anxiety are highly prevalent disorders, whose significant burden is compounded by the presence of oral disease. Mental health disorders and oral health may be associated via changes to the oral microbiome, involving increased pro-inflammatory communication and cortisol in saliva. The present study provides the first culture-independent investigation of the oral microbiome considering depression and anxiety symptoms in adolescence, a critical age where these conditions begin to emerge and co-occur. It also investigates whether inflammation and cortisol moderate these relationships. METHODS: Participants (N = 66) aged 14-18 years (69.70% female) self-reported oral health, depression and anxiety symptoms, and collected saliva samples across two days. Saliva was assayed for cortisol and C-reactive protein (CRP), and used for 16S rRNA gene sequencing to estimate the oral microbiome. Multivariate statistical analyses examined associations. RESULTS: Overall diversity of the oral microbiome did not differ between adolescents by anxiety or depression grouping (low versus high symptoms), and was not associated with symptom measures. Depression and anxiety symptoms were instead associated with differential abundance of specific bacterial taxa, including Spirochaetaceae, Actinomyces, Treponema, Fusobacterium and Leptotrichia spp. Several host mood-microbial relationships were moderated by proposed mechanisms, including salivary cortisol and CRP. CONCLUSIONS: Oral microbiome composition, but not diversity, was associated with adolescent anxiety and depression symptoms. Longitudinal studies considering these associations would improve mechanistic understanding. This research indicates that adolescence remains an essential developmental period to identify early targets for intervention.


Asunto(s)
Ansiedad , Depresión , Microbiota , Boca , Adolescente , Femenino , Humanos , Masculino , Boca/microbiología , ARN Ribosómico 16S/genética , Saliva
8.
J Dent ; 91: 103225, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31693918

RESUMEN

OBJECTIVES: To determine if chewing gum containing casein phosphopeptide stabilised amorphous calcium phosphate (CPP-ACP) promoted an increase in the abundance of Streptococcus sanguinis and other species associated with dental health in supragingival plaque in a clinical study. MATERIALS AND METHODS: Nineteen participants were recruited for a three-leg cross-over, randomised, controlled clinical trial. Participants chewed a sugar-free gum with or without CPP-ACP six times daily for 20 min over two weeks. The study also involved no gum chewing (no gum) for the same two week period. Participants were randomly assigned to one of the test gums or no gum for each intervention period. Participants abstained from oral hygiene and had washout periods of two weeks between intervention periods. After each intervention period, supragingival plaque was collected and analysed for bacterial composition by sequencing the V4 variable region of the 16S rRNA gene. Data were analysed using a linear mixed model. RESULTS: The CPP-ACP gum intervention produced a significant (p < 0.01) increase in the proportions of S. sanguinis (112%), as well as the commensal species Rothia dentocariosa (127%), Corynebacterium durum (80%) and Streptococcus mitis (55%) when compared with the no gum intervention. All the species that were promoted by the CPP-ACP gum are known to possess one or both of the alkali-producing enzymes arginine deiminase and nitrate reductase. CONCLUSION: This clinical study demonstrated that chewing a sugar-free gum containing CPP-ACP promoted prebiosis by significantly increasing the proportion of S. sanguinis and other health-associated bacterial species in supragingival plaque. CLINICAL SIGNIFICANCE: Regular chewing of CPP-ACP sugar-free gum increases the proportions of health-associated commensal species in supragingival plaque to promote prebiosis and oral homeostasis.


Asunto(s)
Caseínas/farmacología , Goma de Mascar , Esmalte Dental/efectos de los fármacos , Placa Dental/metabolismo , Prebióticos , Estudios Cruzados , Esmalte Dental/metabolismo , Placa Dental/tratamiento farmacológico , Humanos , ARN Ribosómico 16S , Streptococcus , Streptococcus sanguis , Azúcares/efectos adversos , Remineralización Dental
9.
Int J Paediatr Dent ; 29(3): 310-324, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30666740

RESUMEN

BACKGROUND: Diet cariogenicity plays a major role as both a protective and risk factor in the development of early childhood caries (ECC). AIM: Develop a scale measuring the cariogenicity of foods and beverages and employ it to describe the cariogenicity of young children's diets and predict dental caries outcomes. DESIGN: Scores of cariogenicity and consumption frequency were applied to food frequency questionnaire (FFQ) collected from an Australian children's cohort study with three time-points of data. One-way ANOVA, with post hoc Tukey test compared mean cariogenic scale measured at 18 months between the subsample of children with caries classification at age 5 years. RESULTS: At 6 months, children's mean cariogenic score was 10.05, increasing to 34.18 at 12 and 50.00 at 18 months. Mean cariogenic scale score at 18 months was significantly higher in children with advanced disease at 5 years (mean scale score: 59.0 ± 15.9) compared to those that were healthy (mean score 47.7 ± 17.5, P = 0.007) or had mild-moderate disease (mean score 48.2 ± 17.3, P = 0.008). CONCLUSIONS: The cariogenic diet scale provides a useful indication of the increasing cariogenicity of children's diets with age and highlights the incorporation of discretionary choice foods and beverages into the diets of young children much earlier than nutritionally recommended.


Asunto(s)
Caries Dental , Dieta Cariógena , Australia , Niño , Preescolar , Estudios de Cohortes , Dieta , Estudios de Factibilidad , Humanos
10.
Artículo en Inglés | MEDLINE | ID: mdl-31921707

RESUMEN

Chronic periodontitis has a polymicrobial biofilm etiology and interactions between key oral bacterial species, such as Porphyromonas gingivalis and Treponema denticola contribute to disease progression. P. gingivalis and T. denticola are co-localized in subgingival plaque and have been previously shown to exhibit strong synergy in growth, biofilm formation and virulence in an animal model of disease. The motility of T. denticola, although not considered as a classic virulence factor, may be involved in synergistic biofilm development between P. gingivalis and T. denticola. We determined the role of T. denticola motility in polymicrobial biofilm development using an optimized transformation protocol to produce two T. denticola mutants targeting the motility machinery. These deletion mutants were non-motile and lacked the gene encoding the flagellar hook protein of the periplasmic flagella (ΔflgE) or a component of the stator motor that drives the flagella (ΔmotB). The specificity of these gene deletions was determined by whole genome sequencing. Quantitative proteomic analyses of mutant strains revealed that the specific inactivation of the motility-associated gene, motB, had effects beyond motility. There were 64 and 326 proteins that changed in abundance in the ΔflgE and ΔmotB mutants, respectively. In the ΔflgE mutant, motility-associated proteins showed the most significant change in abundance confirming the phenotype change for the mutant was related to motility. However, the inactivation of motB as well as stopping motility also upregulated cellular stress responses in the mutant indicating pleiotropic effects of the mutation. T. denticola wild-type and P. gingivalis displayed synergistic biofilm development with a 2-fold higher biomass of the dual-species biofilms than the sum of the monospecies biofilms. Inactivation of T. denticola flgE and motB reduced this synergy. A 5-fold reduction in dual-species biofilm biomass was found with the motility-specific ΔflgE mutant suggesting that T. denticola periplasmic flagella are essential in synergistic biofilm formation with P. gingivalis.


Asunto(s)
Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Porphyromonas gingivalis/crecimiento & desarrollo , Treponema denticola/genética , Animales , Periodontitis Crónica/microbiología , Eliminación de Gen , Genoma Bacteriano/genética , Humanos , Locomoción/genética , Locomoción/fisiología , Interacciones Microbianas/fisiología , Treponema denticola/crecimiento & desarrollo , Treponema denticola/patogenicidad , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Secuenciación Completa del Genoma
11.
J Proteome Res ; 17(7): 2377-2389, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29766714

RESUMEN

Porphyromonas gingivalis is an anaerobic, Gram-negative oral pathogen associated with chronic periodontitis. P. gingivalis has an obligate requirement for heme, which it obtains from the host. Heme availability has been linked to disease initiation and progression. In this study we used continuous culture of the bacterium to determine the effect of heme limitation and excess on the P. gingivalis proteome. Four biological replicates of whole cell lysate (WCL) and outer membrane vesicle (OMV) samples were digested with trypsin and analyzed by tandem mass spectrometry and MaxQuant label-free quantification. In total, 1211 proteins were quantified, with 108 and 49 proteins significantly changing in abundance more than 1.5-fold ( p < 0.05) in the WCLs and OMVs, respectively. The proteins most upregulated in response to heme limitation were those involved in binding and transporting heme, whereas the four proteins most upregulated under the heme-excess condition constitute a putative heme efflux system. In general, the protein abundance ratios obtained for OMVs and WCLs agreed, indicating that changes to the OM protein composition are passed onto OMVs; however, 16 proteins were preferentially packaged into OMVs under one condition more than the other. In particular, moonlighting cytoplasmic proteins were preferentially associated with OMVs under heme excess.


Asunto(s)
Micropartículas Derivadas de Células/química , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Hemo/farmacología , Porphyromonas gingivalis/química , Proteoma/metabolismo , Proteínas de la Membrana Bacteriana Externa , Micropartículas Derivadas de Células/efectos de los fármacos , Hemo/análisis , Porphyromonas gingivalis/citología , Porphyromonas gingivalis/ultraestructura , Proteoma/efectos de los fármacos
12.
Artículo en Inglés | MEDLINE | ID: mdl-28824884

RESUMEN

Porphyromonas gingivalis is one of the bacterial species most closely associated with periodontitis and can shed large numbers of outer membrane vesicles (OMVs), which are increasingly thought to play a significant role in bacterial virulence and pathogenicity. Macrophages are amongst the first immune cells to respond to bacteria and their products, so we sought to directly compare the response of macrophages to P. gingivalis or its purified OMVs. Macrophages stimulated with OMVs produced large amounts of TNFα, IL-12p70, IL-6, IL-10, IFNß, and nitric oxide compared to cells infected with P. gingivalis, which produced very low levels of these mediators. Both P. gingivalis and OMVs induced a shift in macrophage metabolism from oxidative phosphorylation (OXPHOS) to glycolysis, which was supported by enhanced lactate release, decreased mitochondrial oxygen consumption with reduced spare respiratory capacity, as well as increased mitochondrial reactive oxygen species (ROS) production. Corresponding to this metabolic shift, gene expression analysis of macrophages infected with P. gingivalis or stimulated with OMVs revealed a broad transcriptional upregulation of genes critical to glycolysis and a downregulation of genes associated with the TCA cycle. Upon examination of inflammasome signaling and pyroptosis it was found that P. gingivalis did not activate the inflammasome in macrophages as the mature forms of caspase-1, IL-1ß, and IL-18 were not detected and there was no extracellular release of lactate dehydrogenase (LDH) or 7-AAD staining. In comparison, macrophages stimulated with OMVs potently activated caspase-1, produced large amounts of IL-1ß, IL-18, released LDH, and were positive for 7-AAD indicative of pyroptotic cell death. These data directly quantitate the distinct effects of P. gingivalis and its OMVs on macrophage inflammatory phenotype, mitochondrial function, inflammasome activation, and pyroptotic cell death that may have potential implications for their roles in chronic periodontitis.


Asunto(s)
Vesículas Extracelulares/metabolismo , Inflamasomas/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Porphyromonas gingivalis/inmunología , Piroptosis , Animales , Caspasa 1/metabolismo , Citocinas/metabolismo , Expresión Génica , Glucólisis , Humanos , Inflamación , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-18 , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Óxido Nítrico/metabolismo , Fosforilación Oxidativa , Consumo de Oxígeno , Porphyromonas gingivalis/patogenicidad , Factor de Necrosis Tumoral alfa/metabolismo
13.
Sci Rep ; 7(1): 7072, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28765539

RESUMEN

Bacterial outer membrane vesicles (OMVs) are extracellular sacs containing biologically active products, such as proteins, cell wall components and toxins. OMVs are reported to contain DNA, however, little is known about the nature of this DNA, nor whether it can be transported into host cells. Our work demonstrates that chromosomal DNA is packaged into OMVs shed by bacteria during exponential phase. Most of this DNA was present on the external surfaces of OMVs, with smaller amounts located internally. The DNA within the internal compartments of Pseudomonas aeruginosa OMVs were consistently enriched in specific regions of the bacterial chromosome, encoding proteins involved in virulence, stress response, antibiotic resistance and metabolism. Furthermore, we demonstrated that OMVs carry DNA into eukaryotic cells, and this DNA was detectable by PCR in the nuclear fraction of cells. These findings suggest a role for OMV-associated DNA in bacterial-host cell interactions and have implications for OMV-based vaccines.


Asunto(s)
ADN Bacteriano/metabolismo , Endocitosis , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Vesículas Extracelulares/metabolismo , Bacterias Gramnegativas/metabolismo , Línea Celular , Humanos
14.
J Oral Microbiol ; 9(1): 1339579, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28748041

RESUMEN

Azithromycin has recently gained popularity for the treatment of periodontal disease, despite sparse literature supporting efficiency in treating periodontal bacterial biofilms. The aim of this study was to evaluate the effect of azithromycin on biofilms comprised of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia in comparison to an amoxicillin and metronidazole combination. P. gingivalis W50, T. denticola ATCC35405, and T. forsythia ATCC43037 grown under anaerobic conditions at 37°C were aliquoted into 96-well flat-bottom plates in different combinations with addition of azithromycin or amoxicillin + metronidazole at various concentrations. For the biofilm assay, the plates were incubated at 37°C anaerobically for 48 h, after which the biofilms were stained with crystal violet and measured for absorbance at AU620. In this model, polymicrobial biofilms of P. gingivalis + T. denticola, P. gingivalis + T. forsythia, and T. denticola + T. forsythia were cultured. Combination of all three bacteria enhanced biofilm biomass. Azithromycin demonstrated a minimal biofilm inhibitory concentration (MBIC) of 10.6 mg/L, while the amoxicillin + metronidazole combination was more effective in inhibiting biofilm formation with a MBIC of 1.63 mg/L. Polymicrobial biofilm formation was demonstrated by combination of all three red complex bacteria. Azithromycin was ineffective in preventing biofilm formation within a clinically achievable concentration, whereas the combination of amoxicillin and metronidazole was more effective for this purpose.

15.
Front Microbiol ; 8: 48, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28184216

RESUMEN

Porphyromonas gingivalis is a keystone pathogen of chronic periodontitis. The virulence of P. gingivalis is reported to be strain related and there are currently a number of strain typing schemes based on variation in capsular polysaccharide, the major and minor fimbriae and adhesin domains of Lys-gingipain (Kgp), amongst other surface proteins. P. gingivalis can exchange chromosomal DNA between strains by natural competence and conjugation. The aim of this study was to determine the genetic variability of P. gingivalis strains sourced from international locations over a 25-year period and to determine if variability in surface virulence factors has a phylogenetic basis. Whole genome sequencing was performed on 13 strains and comparison made to 10 previously sequenced strains. A single nucleotide polymorphism-based phylogenetic analysis demonstrated a shallow tri-lobed phylogeny. There was a high level of reticulation in the phylogenetic network, demonstrating extensive horizontal gene transfer between the strains. Two highly conserved variants of the catalytic domain of the major virulence factor the Kgp proteinase (KgpcatI and KgpcatII) were found. There were three variants of the fourth Kgp C-terminal cleaved adhesin domain. Specific variants of the cell surface proteins FimA, FimCDE, MfaI, RagAB, Tpr, and PrtT were also identified. The occurrence of all these variants in the P. gingivalis strains formed a mosaic that was not related to the SNP-based phylogeny. In conclusion P. gingivalis uses domain rearrangements and genetic exchange to generate diversity in specific surface virulence factors.

16.
PLoS One ; 11(10): e0164313, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711252

RESUMEN

Porphyromonas gingivalis utilises the Bacteroidetes-specific type IX secretion system (T9SS) to export proteins across the outer membrane (OM), including virulence factors such as the gingipains. The secreted proteins have a conserved carboxy-terminal domain essential for type IX secretion that is cleaved upon export. In P. gingivalis the T9SS substrates undergo glycosylation with anionic lipopolysaccharide (A-LPS) and are attached to the OM. In this study, comparative analyses of 24 Bacteroidetes genomes identified ten putative novel components of the T9SS in P. gingivalis, one of which was PG1058. Computer modelling of the PG1058 structure predicted a novel N- to C-terminal architecture comprising a tetratricopeptide repeat (TPR) domain, a ß-propeller domain, a carboxypeptidase regulatory domain-like fold (CRD) and an OmpA_C-like putative peptidoglycan binding domain. Inactivation of pg1058 in P. gingivalis resulted in loss of both colonial pigmentation and surface-associated proteolytic activity; a phenotype common to T9SS mutants. Immunoblot and LC-MS/MS analyses of subcellular fractions revealed T9SS substrates accumulated within the pg1058 mutant periplasm whilst whole-cell ELISA showed the Kgp gingipain was absent from the cell surface, confirming perturbed T9SS function. Immunoblot, TEM and whole-cell ELISA analyses indicated A-LPS was produced and present on the pg1058 mutant cell surface although it was not linked to T9SS substrate proteins. This indicated that PG1058 is crucial for export of T9SS substrates but not for the translocation of A-LPS. PG1058 is a predicted lipoprotein and was localised to the periplasmic side of the OM using whole-cell ELISA, immunoblot and LC-MS/MS analyses of subcellular fractions. The structural prediction and localisation of PG1058 suggests that it may have a role as an essential scaffold linking the periplasmic and OM components of the T9SS.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Ligadas a Lípidos/química , Porphyromonas gingivalis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Immunoblotting , Proteínas Ligadas a Lípidos/genética , Proteínas Ligadas a Lípidos/inmunología , Proteínas Ligadas a Lípidos/metabolismo , Lipopolisacáridos/metabolismo , Datos de Secuencia Molecular , Mutación , Péptido Hidrolasas/metabolismo , Fenotipo , Porphyromonas gingivalis/genética , Dominios Proteicos , Espectrometría de Masas en Tándem
17.
PLoS One ; 11(9): e0162322, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27589264

RESUMEN

Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.


Asunto(s)
Biopelículas/efectos de los fármacos , Caseínas/farmacología , Cementos de Ionómero Vítreo , Streptococcus mutans/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Caries Dental/prevención & control , Humanos , Streptococcus mutans/crecimiento & desarrollo
18.
Infect Immun ; 84(9): 2575-85, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27354442

RESUMEN

Periodontitis is a significant problem in companion animals, and yet little is known about the disease-associated microbiota. A major virulence factor for the human periodontal pathogen Porphyromonas gingivalis is the lysyl- and arginyl-specific proteolytic activity of the gingipains. We screened several Porphyromonas species isolated from companion animals-P. asaccharolytica, P. circumdentaria, P. endodontalis, P. levii, P. gulae, P. macacae, P. catoniae, and P. salivosa-for Lys- and Arg-specific proteolytic activity and compared the epithelial and macrophage responses and induction of alveolar bone resorption of the protease active species to that of Porphyromonas gingivalis Only P. gulae exhibited Lys-and Arg-specific proteolytic activity. The genes encoding the gingipains (RgpA/B and Kgp) were identified in the P. gulae strain ATCC 51700 and all publicly available 12 draft genomes of P. gulae strains. P. gulae ATCC 51700 induced levels of alveolar bone resorption in an animal model of periodontitis similar to those in P. gingivalis W50 and exhibited a higher capacity for autoaggregation and binding to oral epithelial cells with induction of apoptosis. Macrophages (RAW 264.7) were found to phagocytose P. gulae ATCC 51700 and the fimbriated P. gingivalis ATCC 33277 at similar levels. In response to P. gulae ATCC 51700, macrophages secreted higher levels of cytokines than those induced by P. gingivalis ATCC 33277 but lower than those induced by P. gingivalis W50, except for the interleukin-6 response. Our results indicate that P. gulae exhibits virulence characteristics similar to those of the human periodontal pathogen P. gingivalis and therefore may play a key role in the development of periodontitis in companion animals.


Asunto(s)
Periodontitis/microbiología , Porphyromonas gingivalis/inmunología , Porphyromonas gingivalis/patogenicidad , Porphyromonas/inmunología , Porphyromonas/patogenicidad , Factores de Virulencia/inmunología , Virulencia/inmunología , Pérdida de Hueso Alveolar/inmunología , Pérdida de Hueso Alveolar/microbiología , Animales , Infecciones por Bacteroidaceae/inmunología , Infecciones por Bacteroidaceae/microbiología , Línea Celular , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Femenino , Humanos , Interleucina-6/inmunología , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C
19.
J Dent ; 50: 1-11, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27131496

RESUMEN

OBJECTIVES: This review paper evaluates the use of in vitro biofilm models for the testing of anticariogenic agents. DATA: Caries is a biofilm-mediated oral disease and in vitro biofilm models have been widely utilised to assess how anticariogenic or antimicrobial agents affect the de/remineralisation process of caries. The use of enamel or dentine substrata has enabled the assessment of the relationship between bacterial activity and caries lesion initiation and progression and how this relationship could be affected by the agent under study. SOURCES: Only papers published in the English literature were reviewed. STUDY SELECTION: Both 'open' and 'closed' biofilm systems utilising either single or multiple-species as defined or undefined inocula are analysed. CONCLUSIONS: There is a wide variety of in vitro biofilm models used in the assessment of anticariogenic agents. A reproducible model that mimics the shear forces present in the oral environment, and uses a defined multiple-species inocula on tooth substrates can provide valuable insight into the effectiveness of these agents. CLINICAL RELEVANCE: Biofilm models are important tools for the testing of the mechanism of action and efficacy of novel anticariogenic agents. Results from these experiments help facilitate the design of randomised, controlled clinical trials for testing of efficacy of the agents to provide essential scientific evidence for their clinical use.


Asunto(s)
Biopelículas , Bacterias , Caries Dental , Esmalte Dental , Dentina
20.
J Dent ; 49: 33-9, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27109215

RESUMEN

OBJECTIVES: To determine the potential acidogenicy of liquid breakfasts. METHODS: In vitro acid production by Streptococcus mutans was measured in the beverages at a pH of 5.5, as was the fall in pH over 10min. The buffering capacity was determined, as well as the calcium, inorganic phosphate and fluoride concentrations (total and soluble) of the beverages. Bovine milk (UHT) was used for comparison. RESULTS: The rate of acid production by S. mutans, and pH fall over 10min was greater in liquid breakfasts compared to bovine milk. All beverages except one demonstrated a significantly lower buffering capacity than bovine milk. All beverages contained significantly greater concentrations of soluble calcium than bovine milk, and all except two contained significantly more soluble inorganic phosphate. CONCLUSIONS: S. mutans was able to generate significantly more acid in the liquid breakfasts than in bovine milk, indicating these drinks may contribute to a cariogenic diet. In general, the liquid breakfasts required significantly less acid than bovine milk to reduce their pH to the approximate critical pH for enamel demineralisation. However, the liquid breakfasts also tended to contain significantly more soluble calcium and inorganic phosphate than bovine milk. CLINICAL SIGNIFICANCE: The substantial amounts and various types of sugars found within liquid breakfast beverages may result in a significant pH drop in dental plaque following consumption of these products.


Asunto(s)
Desayuno , Animales , Esmalte Dental , Concentración de Iones de Hidrógeno , Leche , Streptococcus mutans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...