Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(40): 24936-24946, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958672

RESUMEN

While near-cognate codons are frequently used for translation initiation in eukaryotes, their efficiencies are usually low (<10% compared to an AUG in optimal context). Here, we describe a rare case of highly efficient near-cognate initiation. A CUG triplet located in the 5' leader of POLG messenger RNA (mRNA) initiates almost as efficiently (∼60 to 70%) as an AUG in optimal context. This CUG directs translation of a conserved 260-triplet-long overlapping open reading frame (ORF), which we call POLGARF (POLG Alternative Reading Frame). Translation of a short upstream ORF 5' of this CUG governs the ratio between POLG (the catalytic subunit of mitochondrial DNA polymerase) and POLGARF synthesized from a single POLG mRNA. Functional investigation of POLGARF suggests a role in extracellular signaling. While unprocessed POLGARF localizes to the nucleoli together with its interacting partner C1QBP, serum stimulation results in rapid cleavage and secretion of a POLGARF C-terminal fragment. Phylogenetic analysis shows that POLGARF evolved ∼160 million y ago due to a mammalian-wide interspersed repeat (MIR) transposition into the 5' leader sequence of the mammalian POLG gene, which became fixed in placental mammals. This discovery of POLGARF unveils a previously undescribed mechanism of de novo protein-coding gene evolution.


Asunto(s)
Codón Iniciador/genética , ADN Polimerasa gamma/genética , Filogenia , Biosíntesis de Proteínas/genética , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Femenino , Humanos , Proteínas Mitocondriales/genética , Sistemas de Lectura Abierta/genética , Embarazo , ARN Mensajero/genética , Sistemas de Lectura/genética
2.
Biotechnol Lett ; 41(8-9): 929-939, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31321593

RESUMEN

OBJECTIVE: To develop a simple robust methodology of screening multiple CHO cell clones secreting recombinant proteins to assess their specific productivity. RESULTS: We developed a dual assay based on immunoassay measurements of a recombinant protein expression combined with staining of viable cells with resazurin. Following this approach, colonies can be simultaneously assessed for cell growth rate and for production of a recombinant protein. Combination of these two assays enables to estimate productivity of a recombinant protein per cell from the very early stages of a cell line development process (CLD) and exclude poor producers from further steps. Comparison of the dual assay with a standard CLD protocol followed by only analysis of protein expression level showed at least 10-20% increase in the amount of clones that can be included into pool of high-producers at early stages. This shortens duration of a typical CLD scheme from 23 to 19 weeks. CONCLUSIONS: Our method: (i) allows to include into workflow clones that demonstrate slow growth during single cell cloning but producing high amounts of a target protein, which otherwise would be lost in standard protocols of cells screening; (ii) can be applied for testing of DNA vectors for transfection and protein production; (iii) can be used for monitoring the heterogeneity of cell population and analysis of stable pools productivity.


Asunto(s)
Biotecnología/métodos , Células CHO , Proliferación Celular , Técnicas Citológicas/métodos , Tamizaje Masivo/métodos , Proteínas Recombinantes/metabolismo , Animales , Cricetulus , Proteínas Recombinantes/genética , Coloración y Etiquetado/métodos
3.
Biochem Biophys Res Commun ; 514(3): 613-617, 2019 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-31072616

RESUMEN

Tropomyosin (Tpm) is an α-helical coiled-coil protein dimer, which forms a continuous head-to-tail polymer along the actin filament. In striated muscles, Tpm plays an important role in the Ca2+-dependent regulation of muscle contraction. However, little is known about functional and especially structural properties of the numerous non-muscle Tpm isoforms. In the present work, we have applied circular dichroism (CD) and differential scanning calorimetry (DSC) to investigate thermal unfolding and domain structure of various non-muscle human Tpm isoforms. These isoforms, the products of two different genes, TPM1 and TPM3, also significantly differ by alternatively spliced exons: N-terminal exons 1a2b or 1b, internal exons 6a or 6b, and C-terminal exons 9a, 9c or 9d. Our results clearly demonstrate that structural properties of various non-muscle Tpm isoforms can be quite different depending on the presence of different alternatively spliced exons in their genes. These data show for the first time a significant difference in the thermal unfolding between muscle and non-muscle Tpm isoforms and indicate that replacement of alternatively spliced exons alters the stability of certain domains in the Tpm molecule.


Asunto(s)
Músculo Esquelético/metabolismo , Desplegamiento Proteico , Temperatura , Tropomiosina/química , Tropomiosina/metabolismo , Calorimetría , Rastreo Diferencial de Calorimetría , Humanos , Peso Molecular , Neuronas/metabolismo , Dominios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estabilidad Proteica , Estructura Secundaria de Proteína
4.
Cell Stress Chaperones ; 19(4): 507-18, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24282123

RESUMEN

Recombinant chimeras of small heat shock proteins (sHsp) HspB1, HspB5, and HspB6 containing enhanced yellow fluorescent protein (EYFP) attached to their C-terminal ends were constructed and purified. Some properties of these chimeras were compared with the corresponding properties of the same chimeras containing EYFP attached to the N-terminal end of sHsp. The C-terminal fluorescent chimeras of HspB1 and HspB5 tend to aggregate and form a heterogeneous mixture of oligomers. The apparent molecular weight of the largest C-terminal chimeric oligomers was higher than that of the corresponding N-terminal chimeras or of the wild-type proteins; however, both homooligomers of N-terminal chimeras and homooligomers of C-terminal chimeras contained fewer subunits than the wild-type HspB1 or HspB5. Both N-terminal and C-terminal chimeras of HspB6 form small oligomers with an apparent molecular weight of 73-84 kDa. The C-terminal chimeras exchange their subunits with homologous wild-type proteins. Heterooligomers formed by the wild-type HspB1 (or HspB5) and the C-terminal chimeras of HspB6 differ in size and composition from heterooligomers formed by the corresponding wild-type proteins. As a rule, the N-terminal chimeras possess similar or slightly higher chaperone-like activity than the corresponding wild-type proteins, whereas the C-terminal chimeras always have a lower chaperone-like activity than the wild-type proteins. It is concluded that attachment of EYFP to either N-terminal or C-terminal ends of sHsp affects their oligomeric structure, their ability to form heterooligomers, and their chaperone-like activity. Therefore, the data obtained with fluorescent chimeras of sHsp expressed in the cell should be interpreted with caution.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico Pequeñas/química , Proteínas de Choque Térmico Pequeñas/metabolismo , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/genética , Proteínas de Choque Térmico Pequeñas/genética , Humanos , Proteínas Luminiscentes/genética , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión/genética
5.
Biochimie ; 95(8): 1582-92, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23643870

RESUMEN

Some physico-chemical properties of R140G and K141Q mutants of human small heat shock protein HspB1 associated with hereditary peripheral neuropathy were analyzed. Mutation K141Q did not affect intrinsic Trp fluorescence and interaction with hydrophobic probe bis-ANS, whereas mutation R140G decreased both intrinsic fluorescence and fluorescence of bis-ANS bound to HspB1. Both mutations decreased thermal stability of HspB1. Mutation R140G increased, whereas mutation K141Q decreased the rate of trypsinolysis of the central part (residues 5-188) of HspB1. Both the wild type HspB1 and its K141Q mutant formed large oligomers with apparent molecular weight ∼560 kDa. The R140G mutant formed two types of oligomers, i.e. large oligomers tending to aggregate and small oligomers with apparent molecular weight ∼70 kDa. The wild type HspB1 formed mixed homooligomers with R140G mutant with apparent molecular weight ∼610 kDa. The R140G mutant was unable to form high molecular weight heterooligomers with HspB6, whereas the K141Q mutant formed two types of heterooligomers with HspB6. In vitro measured chaperone-like activity of the wild type HspB1 was comparable with that of K141Q mutant and was much higher than that of R140G mutant. Mutations of homologous hot-spot Arg (R140G of HspB1 and R120G of αB-crystallin) induced similar changes in the properties of two small heat shock proteins, whereas mutations of two neighboring residues (R140 and K141) induced different changes in the properties of HspB1.


Asunto(s)
Proteínas de Choque Térmico HSP27/genética , Mutación , Enfermedades del Sistema Nervioso Periférico/genética , Cromatografía en Gel , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico , Humanos , Chaperonas Moleculares , Espectrometría de Fluorescencia
6.
Biochimie ; 94(8): 1794-804, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22531625

RESUMEN

Fluorescent chimeras composed of enhanced cyan (or enhanced yellow) fluorescent proteins (ECFP or EYFP) and one of the four human small heat shock proteins (HspB1, HspB5, HspB6 or HspB8) were expressed in E. coli and purified. Fluorescent chimeras were used for investigation of heterooligomeric complexes formed by different small heat shock proteins (sHsp) and for analysis of their subunit exchange. EYFP-HspB1 and ECFP-HspB6 form heterooligomeric complex with apparent molecular weight of ∼280 kDa containing equimolar quantities of both sHsp. EYFP-HspB5 and ECFP-HspB6 formed heterogeneous oligomeric complexes. Fluorescent proteins inside heterooligomeric complexes formed by HspB1/HspB6 and HspB5/HspB6 chimeras are closely located, making possible effective fluorescence resonance energy transfer (FRET). Neither the wild type HspB8 nor its fluorescent chimeras were able to form stable heterooligomeric complexes with the wild type HspB1 and HspB5. Homo- and hetero-FRET was used for analysis of subunit exchange of small heat shock proteins. The apparent rate constant of subunit exchange was temperature-dependent and was higher for HspB6 forming small oligomers than for HspB1 forming large oligomers. Replacement induced by homologous subunits was more rapid than the replacement induced by heterologous subunits of small heat shock proteins. Fusion of fluorescent proteins might affect oligomeric structure of small heat shock proteins, however fluorescent chimeras can be useful for investigation of heterooligomeric complexes formed by sHsp and for analysis of kinetics of their subunit exchange.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/química , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli , Transferencia Resonante de Energía de Fluorescencia , Proteínas del Choque Térmico HSP20/química , Proteínas de Choque Térmico HSP27/química , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico Pequeñas/genética , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Chaperonas Moleculares , Proteínas Serina-Treonina Quinasas/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Cadena B de alfa-Cristalina/química
7.
Protein Expr Purif ; 82(1): 45-54, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22100527

RESUMEN

Small heat shock proteins (sHsp) are ubiquitously expressed in all human tissues and have an important housekeeping role in preventing the accumulation of aggregates of improperly folded or denatured proteins. They also participate in the regulation of the cytoskeleton, proliferation, apoptosis and many other vital processes. Fluorescent chimeras composed of sHsp and enhanced fluorescent proteins have been used to determine the intracellular locations of small heat shock proteins and to analyse the hetero-oligomeric complexes formed by different sHsp. However, the biochemical properties and chaperone-like activities of these chimeras have not been investigated. To determine the properties of these chimeras, we fused enhanced yellow and cyan fluorescent proteins (EYFP and ECFP) to the N-termini of four ubiquitously expressed human small heat shock proteins: HspB1, HspB5, HspB6, and HspB8. The eight fluorescent chimeras of small heat shock proteins and isolated fluorescent proteins were expressed in Escherichia coli. The chimeric proteins were isolated and purified via ammonium sulphate fractionation, ion exchange and size-exclusion chromatography. This method provided 20-100 mg of fluorescent chimeras from 1L of bacterial culture. The spectral properties of the chimeras were similar to those of the isolated fluorescent proteins. The fusion of fluorescent proteins to HspB6 and HspB8, which typically form dimers, did not affect their quaternary structures. Oligomers of the fluorescent chimeras of HspB1 and HspB5 were less stable and contained fewer subunits than oligomers formed by the wild-type proteins. Fusion with EYFP decreased the chaperone-like activity of HspB5 and HspB6 whereas fusion with ECFP increased chaperone-like activity. All fluorescent chimeras of HspB1 and HspB8 had higher chaperone-like activity than the wild-type proteins. Thus, although fluorescent chimeras are useful for many purposes, the fluorescent proteins used to form these chimeras may affect certain important properties of sHsp.


Asunto(s)
Proteínas de Choque Térmico Pequeñas/genética , Proteínas de Choque Térmico Pequeñas/aislamiento & purificación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/aislamiento & purificación , Clonación Molecular , Escherichia coli/genética , Expresión Génica , Proteínas de Choque Térmico Pequeñas/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...