Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Sens J ; 20(13): 6881-6888, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32601522

RESUMEN

Several breakthrough applications in biomedical imaging have been reported in the recent years using advanced photoacoustic microscopy imaging systems. While two photon and other optical microscopy systems have recently emerged in portable and wearable form, there is much less work reported on the portable and wearable photoacoustic microscopy (PAM) systems. Working towards this goal, we report our studies on a low-cost and portable photoacoustic microscopy system that uses a custom fabricated 2.5 mm diameter ring ultrasound transducer integrated with a fiber-coupled laser diode. The ultrasound transducer is centered at 17.25 MHz, and shows ~ 45% and ~ 100% fractional bandwidths for ultrasound pulse-echo and photoacoustic A-line signals respectively. To achieve overall system portability, besides the imaging head, other backend imaging system components need to be readily portable as well. In this direction, we have studied the potential use of compact pre-amplifiers, scanning stages and microcontroller based data acquisition and reconstruction for photoacoustic imaging. The portable PAM system is validated by imaging phantoms embedded with light absorbing targets. Future directions that will likely help achieve a completely portable and wearable photoacoustic microscopy system are discussed.

2.
Artículo en Inglés | MEDLINE | ID: mdl-31794394

RESUMEN

A linear piezoelectric micromachined ultrasound transducer (PMUT) array was fabricated and integrated into a device for photoacoustic imaging (PAI) of tissue phantoms. The PMUT contained 65 array elements, with each element having 60 diaphragms of [Formula: see text] diameter and [Formula: see text] pitch. A lead zirconate titanate (PZT) thin film was used as the piezoelectric layer. The in-air vibration response of the PMUT array elements showed a first mode resonance between 6 and 8 MHz. Hydrophone measurements showed 16.2 kPa average peak ultrasound pressure output at 7.5 mm from one element excited with 5 Vpp input. A receive sensitivity of ~0.48 mV/kPa was observed for a PMUT array element with 0 dB gain. The PMUT array was bonded to a custom-printed circuit board to enable compact integration with an optical fiber bundle for PAI. A broad photoacoustic bandwidth of ~89% was observed for the photoacoustic response captured from absorbing pencil lead targets. Linear scanning of a single element of a PMUT array was performed on different tissue phantoms embedded with light-absorbing targets to successfully demonstrate B-mode PAI using PMUTs.


Asunto(s)
Microtecnología/instrumentación , Técnicas Fotoacústicas/instrumentación , Ultrasonografía/instrumentación , Diseño de Equipo , Sistemas Microelectromecánicos/instrumentación , Fantasmas de Imagen , Transductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...