Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Life Sci Alliance ; 5(12)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35914814

RESUMEN

Down syndrome (DS) is caused by human chromosome 21 (HSA21) trisomy. It is characterized by a poorly understood intellectual disability (ID). We studied two mouse models of DS, one with an extra copy of the <i>Dyrk1A</i> gene (189N3) and the other with an extra copy of the mouse Chr16 syntenic region (Dp(16)1Yey). RNA-seq analysis of the transcripts deregulated in the embryonic hippocampus revealed an enrichment in genes associated with chromatin for the 189N3 model, and synapses for the Dp(16)1Yey model. A large-scale yeast two-hybrid screen (82 different screens, including 72 HSA21 baits and 10 rebounds) of a human brain library containing at least 10<sup>7</sup> independent fragments identified 1,949 novel protein-protein interactions. The direct interactors of HSA21 baits and rebounds were significantly enriched in ID-related genes (<i>P</i>-value &lt; 2.29 × 10<sup>-8</sup>). Proximity ligation assays showed that some of the proteins encoded by HSA21 were located at the dendritic spine postsynaptic density, in a protein network at the dendritic spine postsynapse. We located HSA21 DYRK1A and DSCAM, mutations of which increase the risk of autism spectrum disorder (ASD) 20-fold, in this postsynaptic network. We found that an intracellular domain of DSCAM bound either DLGs, which are multimeric scaffolds comprising receptors, ion channels and associated signaling proteins, or DYRK1A. The DYRK1A-DSCAM interaction domain is conserved in <i>Drosophila</i> and humans. The postsynaptic network was found to be enriched in proteins associated with ARC-related synaptic plasticity, ASD, and late-onset Alzheimer's disease. These results highlight links between DS and brain diseases with a complex genetic basis.


Asunto(s)
Enfermedad de Alzheimer , Trastorno del Espectro Autista , Trastorno Autístico , Síndrome de Down , Discapacidad Intelectual , Enfermedad de Alzheimer/genética , Animales , Trastorno del Espectro Autista/genética , Trastorno Autístico/genética , Síndrome de Down/genética , Síndrome de Down/metabolismo , Drosophila , Humanos , Discapacidad Intelectual/genética , Ratones
2.
Sci Data ; 6(1): 151, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31413325

RESUMEN

Alzheimer's disease and other types of dementia are the top cause for disabilities in later life and various types of experiments have been performed to understand the underlying mechanisms of the disease with the aim of coming up with potential drug targets. These experiments have been carried out by scientists working in different domains such as proteomics, molecular biology, clinical diagnostics and genomics. The results of such experiments are stored in the databases designed for collecting data of similar types. However, in order to get a systematic view of the disease from these independent but complementary data sets, it is necessary to combine them. In this study we describe a heterogeneous network-based data set for Alzheimer's disease (HENA). Additionally, we demonstrate the application of state-of-the-art graph convolutional networks, i.e. deep learning methods for the analysis of such large heterogeneous biological data sets. We expect HENA to allow scientists to explore and analyze their own results in the broader context of Alzheimer's disease research.


Asunto(s)
Enfermedad de Alzheimer/genética , Aprendizaje Profundo , Epistasis Genética , Expresión Génica , Humanos , Mapeo de Interacción de Proteínas , Técnicas del Sistema de Dos Híbridos
3.
Nat Nanotechnol ; 12(4): 322-328, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27893730

RESUMEN

Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.


Asunto(s)
Enfermedad de Alzheimer , Trastorno Autístico , Rastreo Celular/métodos , Hipocampo , Nanodiamantes/química , Neuronas , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Transporte Biológico Activo/genética , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Ratones Transgénicos , Microscopía Fluorescente/métodos , Microscopía por Video/métodos , Neuronas/metabolismo , Neuronas/patología
4.
Pain ; 156(8): 1465-1476, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25887464

RESUMEN

Each year, millions of people worldwide are treated for primary or recurrent pelvic malignancies, involving radiotherapy in almost 50% of cases. Delayed development of visceral complications after radiotherapy is recognized in cancer survivors. Therapeutic doses of radiation may lead to the damage of healthy tissue around the tumor and abdominal pain. Because of the lack of experimental models, the underlying mechanisms of radiation-induced long-lasting visceral pain are still unknown. This makes managing radiation-induced pain difficult, and the therapeutic strategies proposed are mostly inefficient. The aim of our study was to develop an animal model of radiation-induced visceral hypersensitivity to (1) analyze some cellular and molecular mechanisms involved and (2) to test a therapeutic strategy using mesenchymal stromal cells (MSCs). Using a single 27-Grays colorectal irradiation in rats, we showed that such exposure induces a persistent visceral allodynia that is associated with an increased spinal sensitization (enhanced p-ERK neurons), colonic neuroplasticity (as increased density of substance P nerve fibers), and colonic mast cell hyperplasia and hypertrophy. Mast cell stabilization by ketotifen provided evidence of their functional involvement in radiation-induced allodynia. Finally, intravenous injection of 1.5 million MSCs, 4 weeks after irradiation, induced a time-dependent reversion of the visceral allodynia and a reduction of the number of anatomical interactions between mast cells and PGP9.5+ nerve fibers. Moreover, unlike ketotifen, MSC treatment has the key advantage to limit radiation-induced colonic ulceration. This work provides new insights into the potential use of MSCs as cellular therapy in the treatment of pelvic radiation disease.


Asunto(s)
Dolor Abdominal/terapia , Colon/efectos de la radiación , Hiperalgesia/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Traumatismos Experimentales por Radiación/complicaciones , Dolor Abdominal/etiología , Dolor Abdominal/metabolismo , Animales , Colon/patología , Modelos Animales de Enfermedad , Hiperalgesia/metabolismo , Hiperplasia/patología , Hipertrofia/patología , Masculino , Mastocitos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Plasticidad Neuronal , Proteínas Tirosina Fosfatasas/metabolismo , Ratas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...