Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Exp Hematol ; : 104588, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097159

RESUMEN

Blood cell production arises from the activity of hematopoietic stem cells (HSCs), defined by their self-renewal capacity and ability to give rise to all mature blood cell types. The mouse remains one of the most studied species in hematological research, and markers to define and isolate mouse HSCs are well-established. Given the very low frequency of HSCs in the bone marrow, stem cell pre-enrichment by red blood cell lysis and magnetic cell separation is often performed as part of the isolation process to reduce sorting times. Several pre-enrichment strategies are available, differing in their speed, degree of enrichment, final cell yield and cost. In the current study, we performed a side-by-side comparison and provide a decision tree to help researchers select a pre-enrichment strategy for mouse HSC isolation depending on their downstream application. We then compared different pre-enrichment techniques in combination with metabolomics analysis of HSCs, where speed, yield and temperature during pre-enrichment are crucial factors, and found that the choice of pre-enrichment strategy significantly impacts the number of metabolites detected and levels of individual metabolites in HSCs.

2.
Cell Rep ; 43(7): 114401, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38943641

RESUMEN

Human CD8 tumor-infiltrating lymphocytes (TILs) with impaired effector functions and PD-1 expression are categorized as exhausted. However, the exhaustion-like features reported in TILs might stem from their activation rather than the consequence of T cell exhaustion itself. Using CRISPR-Cas9 and lentiviral overexpression in CD8 T cells from non-cancerous donors, we show that the T cell receptor (TCR)-induced transcription factor interferon regulatory factor 4 (IRF4) promotes cell proliferation and PD-1 expression and hampers effector functions and expression of nuclear factor κB (NF-κB)-regulated genes. While CD8 TILs with impaired interferon γ (IFNγ) production exhibit activation markers IRF4 and CD137 and exhaustion markers thymocyte selection associated high mobility group box (TOX) and PD-1, activated T cells in patients with COVID-19 do not demonstrate elevated levels of TOX and PD-1. These results confirm that IRF4+ TILs are exhausted rather than solely activated. Our study indicates, however, that PD-1 expression, low IFNγ production, and active cycling in TILs are all influenced by IRF4 upregulation after T cell activation.


Asunto(s)
Linfocitos T CD8-positivos , Proliferación Celular , Factores Reguladores del Interferón , Interferón gamma , Activación de Linfocitos , Receptor de Muerte Celular Programada 1 , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Interferón gamma/metabolismo , Activación de Linfocitos/inmunología , COVID-19/inmunología , COVID-19/virología , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , SARS-CoV-2/inmunología , FN-kappa B/metabolismo , Proteínas del Grupo de Alta Movilidad
3.
Life Sci Alliance ; 7(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37931958

RESUMEN

The presence of human neutrophils in the tumor microenvironment is strongly correlated to poor overall survival. Most previous studies have focused on the immunosuppressive capacities of low-density neutrophils (LDN), also referred to as granulocytic myeloid-derived suppressor cells, which are elevated in number in the blood of many cancer patients. We observed two types of LDN in the blood of lung cancer and ovarian carcinoma patients: CD45high LDN, which suppressed T-cell proliferation and displayed mature morphology, and CD45low LDN, which were immature and non-suppressive. We simultaneously evaluated the classical normal-density neutrophils (NDN) and, when available, tumor-associated neutrophils. We observed that NDN from cancer patients suppressed T-cell proliferation, and NDN from healthy donors did not, despite few transcriptomic differences. Hence, the immunosuppression mediated by neutrophils in the blood of cancer patients is not dependent on the cells' density but rather on their maturity.


Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias , Humanos , Neutrófilos , Granulocitos , Neoplasias/patología , Fenotipo , Microambiente Tumoral
4.
Front Cell Dev Biol ; 11: 1243863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37842081

RESUMEN

The single cell RNA sequencing technique has been particularly used during the last years, allowing major discoveries. However, the widespread application of this analysis has showed limitations. Indeed, the direct study of fresh tissues is not always feasible, notably in the case of genetically engineered mouse embryo or sensitive tissues whose integrity is affected by classical digestion methods. To overcome these limitations, single nucleus RNA sequencing offers the possibility to work with frozen samples. Thus, single nucleus RNA sequencing can be performed after genotyping-based selection on samples stocked in tissue bank and is applicable to retrospective studies. Therefore, this technique opens the field to a wide range of applications requiring adapted protocols for nucleus isolation according to the tissue considered. Here we developed a protocol of nucleus isolation from frozen murine placenta and pancreas. These two complex tissues were submitted to a combination of enzymatic and manual dissociation before undergoing different steps of washing and centrifugation. The entire protocol was performed with products usually present in a research lab. Before starting the sequencing process, nuclei were sorted by flow cytometry. The results obtained validate the efficiency of this protocol which is easy to set up and does not require the use of commercial kits. This specificity makes it adaptable to different organs and species. The association of this protocol with single nucleus RNA sequencing allows the study of complex samples that resist classical lysis methods due to the presence of fibrotic or fatty tissue, such as fibrotic kidney, tumors, embryonic tissues or fatty pancreas.

5.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37497580

RESUMEN

Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.


Asunto(s)
Orientación del Axón , Arteria Hepática , Animales , Ratones , Conductos Biliares , Morfogénesis , Silenciador del Gen
6.
Front Immunol ; 14: 1308539, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38187391

RESUMEN

Introduction: The transcription factor HELIOS is primarily known for its expression in CD4 regulatory T cells, both in humans and mice. In mice, HELIOS is found in exhausted CD8 T cells. However, information on human HELIOS+ CD8 T cells is limited and conflicting. Methods: In this study, we characterized by flow cytometry and transcriptomic analyses human HELIOS+ CD8 T cells. Results: These T cells primarily consist of memory cells and constitute approximately 21% of blood CD8 T cells. In comparison with memory HELIOS- T-BEThigh CD8 T cells that displayed robust effector functions, the memory HELIOS+ T-BEThigh CD8 T cells produce lower amounts of IFN-γ and TNF-α and have a lower cytotoxic potential. We wondered if these cells participate in the immune response against viral antigens, but did not find HELIOS+ cells among CD8 T cells recognizing CMV peptides presented by HLA-A2 and HLA-B7. However, we found HELIOS+ CD8 T cells that recognize a CMV peptide presented by MHC class Ib molecule HLA-E. Additionally, a portion of HELIOS+ CD8 T cells is characterized by the expression of CD161, often used as a surface marker for identifying TC17 cells. These CD8 T cells express TH17/TC17-related genes encoding RORgt, RORa, PLZF, and CCL20. Discussion: Our findings emphasize that HELIOS is expressed across various CD8 T cell populations, highlighting its significance beyond its role as a transcription factor for Treg or exhausted murine CD8 T cells. The significance of the connection between HELIOS and HLA-E restriction is yet to be understood.


Asunto(s)
Infecciones por Citomegalovirus , Antígenos HLA-E , Humanos , Animales , Ratones , Linfocitos T CD8-positivos , Factor de Necrosis Tumoral alfa , Factores de Transcripción/genética
7.
Cancers (Basel) ; 14(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36230610

RESUMEN

Papillary thyroid carcinoma (PTC) is the most frequent histological subtype of thyroid cancers (TC), and BRAFV600E genetic alteration is found in 60% of this endocrine cancer. This oncogene is associated with poor prognosis, resistance to radioiodine therapy, and tumor progression. Histological follow-up by anatomo-pathologists revealed that two-thirds of surgically-removed thyroids do not present malignant lesions. Thus, continued fundamental research into the molecular mechanisms of TC downstream of BRAFV600E remains central to better understanding the clinical behavior of these tumors. To study PTC, we used a mouse model in which expression of BRAFV600E was specifically switched on in thyrocytes by doxycycline administration. Upon daily intraperitoneal doxycycline injection, thyroid tissue rapidly acquired histological features mimicking human PTC. Transcriptomic analysis revealed major changes in immune signaling pathways upon BRAFV600E induction. Multiplex immunofluorescence confirmed the abundant recruitment of macrophages, among which a population of LYVE-1+/CD206+/STABILIN-1+ was dramatically increased. By genetically inactivating the gene coding for the scavenger receptor STABILIN-1, we showed an increase of CD8+ T cells in this in situ BRAFV600E-dependent TC. Lastly, we demonstrated the presence of CD206+/STABILIN-1+ macrophages in human thyroid pathologies. Altogether, we revealed the recruitment of immunosuppressive STABILIN-1 macrophages in a PTC mouse model and the interest to further study this macrophage subpopulation in human thyroid tissues.

8.
Sci Rep ; 12(1): 12498, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864120

RESUMEN

Development of the pancreas is driven by an intrinsic program coordinated with signals from other cell types in the epithelial environment. These intercellular communications have been so far challenging to study because of the low concentration, localized production and diversity of the signals released. Here, we combined scRNAseq data with a computational interactomic approach to identify signals involved in the reciprocal interactions between the various cell types of the developing pancreas. This in silico approach yielded 40,607 potential ligand-target interactions between the different main pancreatic cell types. Among this vast network of interactions, we focused on three ligands potentially involved in communications between epithelial and endothelial cells. BMP7 and WNT7B, expressed by pancreatic epithelial cells and predicted to target endothelial cells, and SEMA6D, involved in the reverse interaction. In situ hybridization confirmed the localized expression of Bmp7 in the pancreatic epithelial tip cells and of Wnt7b in the trunk cells. On the contrary, Sema6d was enriched in endothelial cells. Functional experiments on ex vivo cultured pancreatic explants indicated that tip cell-produced BMP7 limited development of endothelial cells. This work identified ligands with a restricted tissular and cellular distribution and highlighted the role of BMP7 in the intercellular communications contributing to vessel development and organization during pancreas organogenesis.


Asunto(s)
Células Endoteliales , Organogénesis , Diferenciación Celular/fisiología , Células Endoteliales/metabolismo , Ligandos , Organogénesis/fisiología , Páncreas/metabolismo
9.
Biomedicines ; 10(4)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35453506

RESUMEN

Papillary thyroid cancer (PTC) is the most common endocrine malignancy for which diagnosis and recurrences still challenge clinicians. New perspectives to overcome these issues could come from the study of extracellular vesicle (EV) populations and content. Here, we aimed to elucidate the heterogeneity of EVs circulating in the tumor and the changes in their microRNA content during cancer progression. Using a mouse model expressing BRAFV600E, we isolated and characterized EVs from thyroid tissue by ultracentrifugations and elucidated their microRNA content by small RNA sequencing. The cellular origin of EVs was investigated by ExoView and that of deregulated EV-microRNA by qPCR on FACS-sorted cell populations. We found that PTC released more EVs bearing epithelial and immune markers, as compared to the healthy thyroid, so that changes in EV-microRNAs abundance were mainly due to their deregulated expression in thyrocytes. Altogether, our work provides a full description of in vivo-derived EVs produced by, and within, normal and cancerous thyroid. We elucidated the global EV-microRNAs signature, the dynamic loading of microRNAs in EVs upon BRAFV600E induction, and their cellular origin. Finally, we propose that thyroid tumor-derived EV-microRNAs could support the establishment of a permissive immune microenvironment.

10.
Eur J Med Chem ; 227: 113892, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34678572

RESUMEN

Selenium is an underexplored element that can be used for bioisosteric replacement of lower molecular weight chalcogens such as oxygen and sulfur. More studies regarding the impact of selenium substitution in different chemical scaffolds are needed to fully grasp this element's potential. Herein, we decided to evaluate the impact of selenium incorporation in a series of tryptophan 2,3-dioxygenase (TDO2) inhibitors, a target of interest in cancer immunotherapy. First, we synthesized the different chalcogen isosteres through Suzuki-Miyaura type coupling. Next, we evaluated the isosteres' affinity and selectivity for TDO2, as well as their lipophilicity, microsomal stability and cellular toxicity on TDO2-expressing cell lines. Overall, chalcogen isosteric replacements did not disturb the on-target activity but allowed for a modulation of the compounds' lipophilicity, toxicity and stability profiles. The present work contributes to our understanding of oxygen/sulfur/selenium isostery towards increasing structural options in medicinal chemistry for the development of novel and distinctive drug candidates.


Asunto(s)
Calcógenos/farmacología , Inhibidores Enzimáticos/farmacología , Compuestos Heterocíclicos/farmacología , Selenio/farmacología , Triptófano Oxigenasa/antagonistas & inhibidores , Calcógenos/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/química , Humanos , Estructura Molecular , Oxígeno/química , Oxígeno/farmacología , Selenio/química , Estereoisomerismo , Relación Estructura-Actividad , Azufre/química , Azufre/farmacología , Triptófano Oxigenasa/metabolismo
11.
J Invest Dermatol ; 141(11): 2668-2678.e6, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33992648

RESUMEN

Exacerbated IL-22 activity induces tissue inflammation and immune disorders such as psoriasis. However, because IL-22 is also essential for tissue repair and defense at barrier interfaces, targeting IL-22 activity to treat psoriasis bears the risk of deleterious effects at mucosal sites such as the gut. We previously showed in vitro that IL-22 signaling relies on IL-22 receptor alpha (IL-22Rα) Y-dependent and -independent pathways. The second depends on the C-terminal Y-less region of IL-22Rα and leads to a massive signal transducer and activator of transcription 3 (STAT3) activation. Because STAT3 activation is associated with the development of psoriasis, we hypothesized that the specific inhibition of the noncanonical STAT3 activation by the Y-less region of IL-22Rα could reduce psoriasis-like disease while leaving intact its tissue defense functions in the gut. We show that mice expressing a C-terminally truncated version of IL-22Rα (ΔCtermut/mut mice) are protected from the development of psoriasis-like dermatitis lesions induced by imiquimod to a lesser extent than Il22ra-/- mice. In contrast, only Il22ra-/- mice lose weight after Citrobacter rodentium infection. Altogether, our data suggest that specific targeting of the noncanonical STAT3 activation by IL-22 could serve to treat psoriasis-like skin inflammation without affecting IL-22‒dependent tissue repair or barrier defense at other sites.


Asunto(s)
Imiquimod/toxicidad , Psoriasis/inducido químicamente , Receptores de Interleucina/fisiología , Factor de Transcripción STAT3/fisiología , Animales , Citrobacter rodentium , Infecciones por Enterobacteriaceae/inmunología , Interleucinas/farmacología , Ratones , Ratones Endogámicos C57BL , Interleucina-22
12.
Hepatology ; 74(3): 1445-1460, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33768568

RESUMEN

BACKGROUND AND AIMS: Earlier diagnosis and treatment of intrahepatic cholangiocarcinoma (iCCA) are necessary to improve therapy, yet limited information is available about initiation and evolution of iCCA precursor lesions. Therefore, there is a need to identify mechanisms driving formation of precancerous lesions and their progression toward invasive tumors using experimental models that faithfully recapitulate human tumorigenesis. APPROACH AND RESULTS: To this end, we generated a mouse model which combines cholangiocyte-specific expression of KrasG12D with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammation to mimic iCCA development in patients with cholangitis. Histological and transcriptomic analyses of the mouse precursor lesions and iCCA were performed and compared with human analyses. The function of genes overexpressed during tumorigenesis was investigated in human cell lines. We found that mice expressing KrasG12D in cholangiocytes and fed a DDC diet developed cholangitis, ductular proliferations, intraductal papillary neoplasms of bile ducts (IPNBs), and, eventually, iCCAs. The histology of mouse and human IPNBs was similar, and mouse iCCAs displayed histological characteristics of human mucin-producing, large-duct-type iCCA. Signaling pathways activated in human iCCA were also activated in mice. The identification of transition zones between IPNB and iCCA on tissue sections, combined with RNA-sequencing analyses of the lesions supported that iCCAs derive from IPNBs. We further provide evidence that tensin-4 (TNS4), which is stimulated by KRASG12D and SRY-related HMG box transcription factor 17, promotes tumor progression. CONCLUSIONS: We developed a mouse model that faithfully recapitulates human iCCA tumorigenesis and identified a gene cascade which involves TNS4 and promotes tumor progression.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Carcinoma Ductal/genética , Colangiocarcinoma/genética , Modelos Animales de Enfermedad , Neoplasias Hepáticas Experimentales/genética , Ratones , Tensinas/genética , Animales , Neoplasias de los Conductos Biliares/inducido químicamente , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Carcinoma Ductal/inducido químicamente , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patología , Carcinoma Papilar/inducido químicamente , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patología , Colangiocarcinoma/inducido químicamente , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangitis/inducido químicamente , Colangitis/complicaciones , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/toxicidad , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Transducción de Señal , Tensinas/metabolismo
13.
Cancer Res ; 81(10): 2679-2689, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33602788

RESUMEN

Pancreatic acinar cells are a cell type of origin for pancreatic cancer that become progressively less sensitive to tumorigenesis induced by oncogenic Kras mutations after birth. This sensitivity is increased when Kras mutations are combined with pancreatitis. Molecular mechanisms underlying these observations are still largely unknown. To identify these mechanisms, we generated the first CRISPR-edited mouse models that enable detection of wild-type and mutant KRAS proteins in vivo. Analysis of these mouse models revealed that more than 75% of adult acinar cells are devoid of detectable KRAS protein. In the 25% of acinar cells expressing KRAS protein, transcriptomic analysis highlighted a slight upregulation of the RAS and MAPK pathways. However, at the protein level, only marginal pancreatic expression of essential KRAS effectors, including C-RAF, was observed. The expression of KRAS and its effectors gradually decreased after birth. The low sensitivity of adult acinar cells to Kras mutations resulted from low expression of KRAS and its effectors and the subsequent lack of activation of RAS/MAPK pathways. Pancreatitis triggered expression of KRAS and its effectors as well as subsequent activation of downstream signaling; this induction required the activity of EGFR. Finally, expression of C-RAF in adult pancreas was required for pancreatic tumorigenesis. In conclusion, our study reveals that control of the expression of KRAS and its effectors regulates the sensitivity of acinar cells to transformation by oncogenic Kras mutations. SIGNIFICANCE: This study generates new mouse models to study regulation of KRAS during pancreatic tumorigenesis and highlights a novel mechanism through which pancreatitis sensitizes acinar cells to Kras mutations.


Asunto(s)
Células Acinares/patología , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Sistemas CRISPR-Cas , Proliferación Celular , Modelos Animales de Enfermedad , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Masculino , Ratones , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Pancreatitis/etiología , Pancreatitis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Front Physiol ; 11: 712, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32719614

RESUMEN

The shedding of extracellular vesicles (EVs) from the red blood cell (RBC) surface is observed during senescence in vivo and RBC storage in vitro. Two main models for EV shedding, respectively based on calcium rise and oxidative stress, have been proposed in the literature but the role of the plasma membrane lipid composition and properties is not understood. Using blood in K+/EDTA tubes stored for up to 4 weeks at 4°C as a relevant RBC vesiculation model, we showed here that the RBC plasma membrane lipid composition, organization in domains and biophysical properties were progressively modified during storage and contributed to the RBC vesiculation. First, the membrane content in cholesterol and linoleic acid decreased whereas lipid peroxidation and spectrin:membrane occupancy increased, all compatible with higher membrane rigidity. Second, phosphatidylserine surface exposure showed a first rapid rise due to membrane cholesterol decrease, followed by a second calcium-dependent increase. Third, lipid domains mainly enriched in GM1 or sphingomyelin strongly increased from the 1st week while those mainly enriched in cholesterol or ceramide decreased during the 1st and 4th week, respectively. Fourth, the plasmatic acid sphingomyelinase activity considerably increased upon storage following the sphingomyelin-enriched domain rise and potentially inducing the loss of ceramide-enriched domains. Fifth, in support of the shedding of cholesterol- and ceramide-enriched domains from the RBC surface, the number of cholesterol-enriched domains lost and the abundance of EVs released during the 1st week perfectly matched. Moreover, RBC-derived EVs were enriched in ceramide at the 4th week but depleted in sphingomyelin. Then, using K+/EDTA tubes supplemented with glucose to longer preserve the ATP content, we better defined the sequence of events. Altogether, we showed that EV shedding from lipid domains only represents part of the global vesiculation mechanistics, for which we propose four successive events (cholesterol domain decrease, oxidative stress, sphingomyelin/sphingomyelinase/ceramide/calcium alteration and phosphatidylserine exposure).

16.
Sci Rep ; 10(1): 996, 2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31969659

RESUMEN

In the developing spinal cord, Onecut transcription factors control the diversification of motor neurons into distinct neuronal subsets by ensuring the maintenance of Isl1 expression during differentiation. However, other genes downstream of the Onecut proteins and involved in motor neuron diversification have remained unidentified. In the present study, we generated conditional mutant embryos carrying specific inactivation of Onecut genes in the developing motor neurons, performed RNA-sequencing to identify factors downstream of Onecut proteins in this neuron population, and employed additional transgenic mouse models to assess the role of one specific Onecut-downstream target, the transcription factor Nkx6.2. Nkx6.2 expression was up-regulated in Onecut-deficient motor neurons, but strongly downregulated in Onecut-deficient V2a interneurons, indicating an opposite regulation of Nkx6.2 by Onecut factors in distinct spinal neuron populations. Nkx6.2-null embryos, neonates and adult mice exhibited alterations of locomotor pattern and spinal locomotor network activity, likely resulting from defective survival of a subset of limb-innervating motor neurons and abnormal migration of V2a interneurons. Taken together, our results indicate that Nkx6.2 regulates the development of spinal neuronal populations and the formation of the spinal locomotor circuits downstream of the Onecut transcription factors.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/metabolismo , Factores de Transcripción Onecut/metabolismo , Médula Espinal/metabolismo , Factores de Transcripción/metabolismo , Animales , Expresión Génica , Proteínas de Homeodominio/genética , Locomoción/fisiología , Ratones , Ratones Transgénicos , Factores de Transcripción Onecut/genética , Factores de Transcripción/genética
17.
Mol Pharm ; 16(5): 2048-2059, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30965005

RESUMEN

The purpose of this study was to assess whether cationic nanoliposomes could address tumor vaccines to dendritic cells in the lungs in vivo. Nanoliposomes were prepared using a cationic lipid, dimethylaminoethanecarbamoyl-cholesterol (DC-cholesterol) or dioleoyltrimethylammoniumpropane (DOTAP), and dipalmitoylphosphatidylcholine (DPPC), the most abundant phospholipid in lung surfactant. The liposomes presented a size below 175 nm and they effectively entrapped tumor antigens, an oligodeoxynucletotide containing CpG motifs (CpG) and the fluorescent dye calcein used as a tracer. Although the liposomes could permanently entrap a large fraction of the actives, they could not sustain their release in vitro. Liposomes made of DOTAP were safe to respiratory cells in vitro, while liposomes composed of DC-cholesterol were cytotoxic. DOTAP nanoliposomes were mainly taken up by alveolar macrophages following delivery to the lungs in mice. Few dendritic cells took up the liposomes, and interstitial macrophages did not take up liposomal calcein more than they took up soluble calcein. Stimulation of the innate immune system using liposomal CpG strongly enhanced uptake of calcein liposomes by all phagocytes in the lungs. Although a small percentage of dendritic cells took up the nanoliposomes, alveolar macrophages represented a major barrier to dendritic cell access in the lungs.


Asunto(s)
Islas de CpG/inmunología , Células Dendríticas/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Liposomas/farmacocinética , Pulmón/citología , Pulmón/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , 1,2-Dipalmitoilfosfatidilcolina/farmacocinética , Adyuvantes Inmunológicos/uso terapéutico , Animales , Vacunas contra el Cáncer/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Colesterol/análogos & derivados , Colesterol/farmacocinética , Ácidos Grasos Monoinsaturados/farmacocinética , Femenino , Fluoresceínas/farmacocinética , Colorantes Fluorescentes/farmacocinética , Lipopéptidos , Liposomas/síntesis química , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Antígeno MART-1/farmacología , Ratones , Nanopartículas/química , Compuestos de Amonio Cuaternario/farmacocinética , Distribución Tisular , Antígeno gp100 del Melanoma/farmacología
18.
Front Physiol ; 9: 129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29535635

RESUMEN

The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 µg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.

19.
Hepatology ; 67(1): 313-327, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28833283

RESUMEN

Transcriptional networks control the differentiation of the hepatocyte and cholangiocyte lineages from embryonic liver progenitor cells and their subsequent maturation to the adult phenotype. However, how relative levels of hepatocyte and cholangiocyte gene expression are determined during differentiation remains poorly understood. Here, we identify microRNA (miR)-337-3p as a regulator of liver development. miR-337-3p stimulates expression of cholangiocyte genes and represses hepatocyte genes in undifferentiated progenitor cells in vitro and in embryonic mouse livers. Beyond the stage of lineage segregation, miR-337-3p controls the transcriptional network dynamics of developing hepatocytes and balances both cholangiocyte populations that constitute the ductal plate. miR-337-3p requires Notch and transforming growth factor-ß signaling and exerts a biphasic control on the hepatocyte transcription factor hepatocyte nuclear factor 4α by modulating its activation and repression. With the help of an experimentally validated mathematical model, we show that this biphasic control results from an incoherent feedforward loop between miR-337-3p and hepatocyte nuclear factor 4α. CONCLUSION: Our results identify miR-337-3p as a regulator of liver development and highlight how tight quantitative control of hepatic cell differentiation is exerted through specific gene regulatory network motifs. (Hepatology 2018;67:313-327).


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 1-alfa del Hepatocito/genética , Hepatocitos/metabolismo , MicroARNs/genética , Animales , Western Blotting , Células Cultivadas , Ratones , Transducción de Señal/genética , Estadísticas no Paramétricas , Factores de Transcripción
20.
Immun Inflamm Dis ; 5(2): 200-213, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28474504

RESUMEN

INTRODUCTION: Viruses have developed multiple mechanisms to alter immune reactions. In 1969, it was reported that lactate dehydrogenase-elevating virus (LDV), a single stranded positive sense mouse nidovirus, delays skin allograft rejection and inhibits spleen alterations in graft versus host disease (GVHD). As the underlying mechanisms have remained unresolved and given the need for new therapies of this disease, we reassessed the effects of the virus on GVHD and tried to uncover its mode of action. METHODS: GVHD was induced by transfer of parent (B6) spleen cells to non-infected or LDV-infected B6D2F1 recipients. In vitro mixed-lymhocyte culture (MLC) reactions were used to test the effects of the virus on antigen-presenting cells (APC) and responder T cells. RESULTS: LDV infection resulted in a threefold increase in survival rate with reduced weight loss and liver inflammation but with the establishment of permanent chimerism that correlated with decreased interleukine (IL)-27 and interferon (IFN)γ plasma levels. Infected mice showed a transient elimination of splenic CD11b+ and CD8α+ conventional dendritic cells (cDCs) required for allogeneic CD4 and CD8 T cell responses in vitro. This drop of APC numbers was not observed with APCs derived from toll-like receptor (TLR)7-deficient mice. A second effect of the virus was a decreased T cell proliferation and IFNγ production during MLC without detectable changes in Foxp3+ regulatory T cell (Tregs) numbers. Both cDC and responder T cell inhibition were type I IFN dependent. Although the suppressive effects were very transient, the GVHD inhibition was long-lasting. CONCLUSION: A type I IFN-dependent suppression of DC and T cells just after donor spleen cell transplantation induces permanent chimerism and donor cell implantation in a parent to F1 spleen cell transplantation model. If this procedure can be extended to full allogeneic bone marrow transplantation, it could open new therapeutic perspectives for hematopoietic stem cell transplantation (HSCT).


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Enfermedad Injerto contra Huésped/inmunología , Interferón Tipo I/inmunología , Infecciones por Nidovirales/inmunología , Nidovirales/inmunología , Aloinjertos , Animales , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Células Dendríticas/patología , Enfermedad Injerto contra Huésped/genética , Enfermedad Injerto contra Huésped/patología , Interferón Tipo I/genética , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA