Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Funct Plant Biol ; 39(11): 914-924, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32480841

RESUMEN

A semi-automatic system was developed to monitor micro-plots of wheat cultivars in field conditions for phenotyping. The system is based on a hyperspectral radiometer and 2 RGB cameras observing the canopy from ~1.5m distance to the top of the canopy. The system allows measurement from both nadir and oblique views inclined at 57.5° zenith angle perpendicularly to the row direction. The system is fixed to a horizontal beam supported by a tractor that moves along the micro-plots. About 100 micro-plots per hour were sampled by the system, the data being automatically collected and registered thanks to a centimetre precision geo-location. The green fraction (GF, the fraction of green area per unit ground area as seen from a given direction) was derived from the images with an automatic segmentation process and the reflectance spectra recorded by the radiometers were transformed into vegetation indices (VI) such as MCARI2 and MTCI. Results showed that MCARI2 is a good proxy of the GF, the MTCI as observed from 57° inclination is expected to be mainly sensitive to leaf chlorophyll pigments. The frequent measurements achieved allowed a good description of the dynamics of each micro-plot along the growth cycle. It is characterised by two periods: the first period corresponding to the vegetative stages exhibits a small rate of change of VI with time; followed by the senescence period characterised by a high rate of change. The dynamics were simply described by a bilinear model with its parameters providing high throughput metrics (HTM). A variance analysis achieved over these HTMs showed that several HTMs were highly heritable, particularly those corresponding to MCARI2 as observed from nadir, and those corresponding to the first period. Potentials of such semi-automatic measurement system are discussed for in field phenotyping applications.

2.
Sensors (Basel) ; 11(8): 7954-81, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164055

RESUMEN

This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903-"Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe" that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites.


Asunto(s)
Monitoreo del Ambiente/métodos , Óptica y Fotónica , Radiometría/métodos , Biofisica/métodos , Calibración , Clima , Cambio Climático , Conservación de los Recursos Naturales , Análisis Costo-Beneficio , Ecosistema , Procesamiento Automatizado de Datos , Europa (Continente) , Cooperación Internacional , Luz , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA