Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 22(1)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276650

RESUMEN

Ascophyllum nodosum is a brown seaweed common in Arctic tidal waters. We have collected A. nodosum samples from the Barents Sea (BS), Irminger Sea (IS), and Norwegian Sea (NS) in different reproductive stages and have evaluated their biochemical composition, radical scavenging potential, and health risks. The total content of dominating carbohydrates (fucoidan, mannitol, alginate, and laminaran) ranged from 347 mg/g DW in NS to 528 mg/g DW in BS. The proportion of two main structural monosaccharides of fucoidan (fucose and xylose) differed significantly between the seas and reproductive phase, reaching a maximum at the fertile phase in the BS sample. Polyphenols and flavonoids totals were highest in NS A. nodosum samples and increased on average in the following order: BS < IS < NS. A positive correlation of free radical scavenging activity for seaweed extracts with polyphenols content was observed. The concentration of elements in A. nodosum from the Arctic seas region was in the following order: Ca > Mg > Sr > Fe > Al > Zn > As total > Rb > Mn > Ba > Cu > Co. Seaweeds from BS had the lowest metal pollution index (MPI) of 38.4. A. nodosum from IS had the highest MPI of 83. According to the calculated target hazard quotient (THQ) and hazard index (HI) values, Arctic A. nodosum samples pose no carcinogenic risk to adult and child health and are safe for regular consumption. Our results suggest that the Arctic A. nodosum has a remarkable potential for food and pharmaceutical industries as an underestimated source of polysaccharides, polyphenols, and flavonoids.


Asunto(s)
Ascophyllum , Algas Marinas , Niño , Humanos , Ascophyllum/química , Alginatos , Carbohidratos , Polifenoles , Algas Marinas/química , Flavonoides
2.
Molecules ; 26(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34299472

RESUMEN

The impact of the composition of natural deep eutectic solvents (NADES) and extraction conditions on the simultaneous extraction of hydrophilic ascorbic acid (AA), phlorotannins (TPhC), and lipophilic fucoxanthin (FX) from Fucus vesiculosus was investigated for the first time. In biological tests, the NADES extracts showed the promising ability to scavenge DPPH radicals. A positive correlation was observed between DPPH scavenging activity and AA, TPhC, and FX contents. We calculate the synergistic effect of antioxidants extracted by NADES from F. vesiculosus based on the mixture effect (ME). The addition of 30% water to the NADES and the prolongation of sonication time from 20 min up to 60 min were favorable for the ME. The ME for extracts with the NADES was increased by two folds (ME > 2). In contrast, conventional extraction by maceration with steering at 60 °C does not lead to the synergistic effect (ME = 1). It is notable that the NADES provides high stability and preserves the antioxidant activity of the extracts from F. vesiculosus during storage.


Asunto(s)
Antioxidantes/aislamiento & purificación , Fucus/química , Fitoquímicos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Solventes/química , Antioxidantes/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Fitoquímicos/análisis , Extractos Vegetales/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...