Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(28): 32729-32737, 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35797515

RESUMEN

Fabrication of ultrathin films of dielectric (with particular reference to materials with high dielectric constants) materials has significance in many advanced technological applications including hard protective coatings, sensors, and next-generation logic devices. Current state-of-the-art in microelectronics for fabricating these thin films is a combination of atomic layer deposition and photolithography. As feature size decreases and aspect ratios increase, conformality of the films becomes paramount. Here, we show a polymer brush template-assisted deposition of highly conformal, ultrathin (sub 5 nm) high-κ dielectric metal oxide films (hafnium oxide and zirconium oxide) on topographically patterned silicon nitride substrates. This technique, using hydroxyl terminated poly-4-vinyl pyridine (P4VP-OH) as the polymer brush, allows for conformal deposition with uniform thickness along the trenches and sidewalls of the substrate. Metal salts are infiltrated into the grafted monolayer polymer brush films via solution deposition. Tailoring specific polymer interfacial chemistries for ion infiltration combined with subsequent oxygen plasma treatment enabled the fabrication of high-quality sub 5 nm metal oxide films.

2.
Waste Manag ; 147: 48-59, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623261

RESUMEN

Residual biomass gasification is a promising route for the production of H2-rich syngas. However, the simultaneous formation of pollutants such as light hydrocarbons (HCs), benzene, toluene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) during gasification must be controlled. As a result, this study evaluated the effect of temperature and catalytic reforming over a Rh-Pt/CeO2-SiO2 catalyst during steam gasification of sugarcane residual biomass on syngas composition and pollutant removal. The above was carried out in a horizontal moving reactor, an Amberlite XAD-2 polyaromatic resin was used to collect the contaminants and characterization of the catalyst was performed. In this study, a concentration of up to 37 mol% of H2, a yield of 23.1 g H2 kg-1biomass, and a H2/CO ratio ≥2 were achieved when gasification and reforming were integrated. In addition, the catalyst characterization showed that Rh-Pt/CeO2-SiO2 was not susceptible to sintering and favored the formation of hydroxyl groups that promoted CO oxidation, thereby increasing the H2/CO ratio, as confirmed by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). At 800 °C, where a high H2 yield was obtained, 209 g Nm-3 of light HCs and BTEX, 10.9 g Nm-3 of PAHs, and 32.5 ng WHO-TEQ Nm-3 of PCDD/Fs were formed after gasification. Interestingly, after catalytic reforming, 62% of light HCs and BTEX, 60% of PAHs, and 94% of PCDD/Fs were removed, leading to cleaner syngas with properties that allow it to be used in a wide range of energy applications.


Asunto(s)
Contaminantes Ambientales , Dibenzodioxinas Policloradas , Biomasa , Dibenzofuranos , Gases/química , Lignina , Dióxido de Silicio , Vapor
3.
Biomacromolecules ; 23(6): 2512-2521, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35506692

RESUMEN

Rising global demand for biodegradable materials and green sources of energy has brought attention to lignin. Herein, we report a method for manufacturing standalone lignin membranes without additives for the first time to date. We demonstrate a scalable method for macroporous (∼100 to 200 nm pores) lignin membrane production using four different organosolv lignin materials under a humid environment (>50% relative humidity) at ambient temperatures (∼20 °C). A range of different thicknesses is reported with densely porous films observed to form if the membrane thickness is below 100 nm. The fabricated membranes were readily used as a template for Ni2+ incorporation to produce a nickel oxide membrane after UV/ozone treatment. The resultant mask was etched via an inductively coupled plasma reactive ion etch process, forming a silicon membrane and as a result yielding black silicon (BSi) with a pore depth of >1 µm after 3 min with reflectance <3% in the visible light region. We anticipate that our lignin membrane methodology can be readily applied to various processes ranging from catalysis to sensing and adapted to large-scale manufacturing.


Asunto(s)
Lignina , Silicio , Catálisis , Porosidad , Temperatura
4.
J Phys Chem C Nanomater Interfaces ; 125(46): 25533-25544, 2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34868445

RESUMEN

This study addresses the yet unresolved CO2 methanation mechanism on a Ru/CeO2 catalyst by means of near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) complemented with periodic density functional theory (DFT) calculations. NAP-XPS results show that the switch from H2 to CO2 + H2 mixture oxidizes both the Ru and CeO2 phases at low temperatures, which is explained by the CO2 adsorption modes assessed by means of DFT on each representative surface. CO2 adsorption on Ru is dissociative and moderately endergonic, leading to polybonded Ru-carbonyl groups whose hydrogenation is the rate-determining step in the overall process. Unlike on Ru metal, CO2 can be strongly adsorbed as carbonates on ceria surface oxygen sites or on the reduced ceria at oxygen vacancies as carboxylates (CO2 -δ), resulting in the reoxidation of ceria. Carboxylates can then evolve as CO, which is released either via direct splitting at relatively low temperatures or through stable formate species at higher temperatures. DRIFTS confirm the great stability of formates, whose depletion relates with CO2 conversion in the reaction cell, while carbonates remain on the surface up to higher temperatures. CO generation on ceria serves as an additional reservoir of Ru-carbonyls, cooperating to the overall CO2 methanation process. Altogether, this study highlights the noninnocent role of the ceria support in the performance of Ru/CeO2 toward CO2 methanation.

5.
J Phys Chem C Nanomater Interfaces ; 125(22): 12038-12049, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34630817

RESUMEN

CO2 methanation has been studied with Pr-doped Ru/CeO2 catalysts, and a dual effect of Pr has been observed. For low Pr content (i.e., 3 wt %) a positive effect in oxygen mobility prevails, while for high Pr doping (i.e., 25 wt %) a negative effect in the Ru-CeO2 interaction is more relevant. Isotopic experiments evidenced that Pr hinders the dissociation of CO2, which takes place at the Ru-CeO2 interface. However, once the temperature is high enough (200 °C), Pr improves the oxygen mobility in the CeO2 support, and this enhances CO2 dissociation because the oxygen atoms left are delivered faster to the support sink and the dissociation sites at the interface are cleaned up faster. In situ Raman spectroscopy experiments confirmed that Pr improves the creation of oxygen vacancies on the ceria lattice but hinders their reoxidation by CO2, and both opposite effects reach an optimum balance for 3 wt % Pr doping. In addition, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments showed that Pr doping, regardless of the amount, decreases the population of surface carbon species created on the catalysts surface upon CO2 chemisorption under methanation reaction conditions, affecting both productive reaction intermediates (formates and carbonyls) and unproductive carbonates.

6.
ACS Sustain Chem Eng ; 9(18): 6329-6336, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34567850

RESUMEN

Cryptomelane is an abundant mineral manganese oxide with unique physicochemical features. This work investigates the real capabilities of cryptomelane as an oxidation catalyst. In particular, the preferential CO oxidation (CO-PROX), has been studied as a simple reaction model. When doped with copper, the cryptomelane-based material has revealed a great potential, displaying a comparable activity to the high-performance CuO/CeO2. Despite stability concerns that compromise the primary catalyst reusability, CuO/cryptomelane is particularly robust in the presence of CO2 and H2O, typical components of realistic CO-PROX streams. The CO-PROX reaction mechanism has been assessed by means of isotopic oxygen pulse experiments. Altogether, CuO/CeO2 shows a greater oxygen lability, which facilitates lattice oxygen enrolment in the CO-PROX mechanism. In the case of CuO/cryptomelane, in spite of its lower oxygen mobility, the intrinsic structural water co-assists as active oxygen species involved in CO-PROX. Thus, the presence of moisture in the reaction stream turns out to be beneficial for the stability of the cryptomelane structure, besides aiding into the active oxygen restitution in the catalyst. Overall, this study proves that CuO/cryptomelane is a promising competitor to CuO/CeO2 in CO-PROX technology, whose implementation can bring the CO-PROX technology and H2 purification processes a more sustainable nature.

7.
Materials (Basel) ; 14(17)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34501105

RESUMEN

Honeycomb monoliths are the preferred supports in many industrial heterogeneous catalysis reactions, but current extrusion synthesis only allows obtaining parallel channels. Here, we demonstrate that 3D printing opens new design possibilities that outperform conventional catalysts. High performance carbon integral monoliths have been prepared with a complex network of interconnected channels and have been tested for carbon dioxide hydrogenation to methane after loading a Ni/CeO2 active phase. CO2 methanation rate is enhanced by 25% at 300 °C because the novel design forces turbulent flow into the channels network. The methodology and monoliths developed can be applied to other heterogeneous catalysis reactions, and open new synthesis options based on 3D printing to manufacture tailored heterogeneous catalysts.

8.
ACS Appl Mater Interfaces ; 12(49): 54573-54584, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33256401

RESUMEN

Three-dimensional (3D)-printed catalysts are being increasingly studied; however, most of these studies focus on the obtention of catalytically active monoliths, and thus traditional channeled monolithic catalysts are usually obtained and tested, losing sight of the advantages that 3D-printing could entail. This work goes one step further, and an advanced monolith with specifically designed geometry has been obtained, taking advantage of the versatility provided by 3D-printing. As a proof of concept, nonchanneled advanced monolithic (NCM) support, composed of several transversal discs containing deposits for active phase deposition and slits through which the gas circulates, was obtained and tested in the CO-PrOx reaction. The results evidenced that the NCM support showed superior catalytic performance compared to conventional channeled monoliths (CMs). The region of temperature in which the active phase can work under chemical control, and thus in a more efficient way, is increased by 31% in NCM compared to the powdered or the CM sample. Turbulence occurs inside the fluid path through the NCM, which enhances the mass transfer of reagents and products toward and from the active sites to the fluid bulk favoring the chemical reaction rate. The nonchanneled monolith also improved heat dispersion by the tortuous paths, reducing the local temperature at the active site. Thus, the way in which reactants and products are transported inside the monoliths plays a crucial role, and this is affected by the inner geometry of the monoliths.

9.
Environ Sci Technol ; 54(4): 2439-2447, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31944674

RESUMEN

The effect of the three-dimensionally ordered macroporous (3DOM) structure and the Ni doping of CeO2 on the physicochemical properties and catalytic activity for soot combustion was studied. Moreover, the way in which Ni is introduced to the ceria support was also investigated. For this, CeO2 supports were synthesized with uncontrolled (Ref) and 3DOM-structured morphology, and their respective Ni/CeO2 catalysts were prepared by impregnation of the previously synthesized supports or by successive impregnation of both precursors (Ni and Ce) on the 3DOM template. Conclusions reached in this study are: (1) the 3DOM structure increases the surface area of the catalysts and improves the catalyst-soot contact. (2) The doping of CeO2 with Ni improves the catalytic activity because the NiO participates in the catalytic oxidation of NO to NO2, and also favors the production of active oxygen and the catalyst oxygen storage capacity. (3) Ni incorporation method affects its physicochemical and catalytic properties. By introducing Ni by successive infiltration in the solid template, the CeO2 crystal size is reduced, Ni dispersion is improved, and the catalyst reducibility is increased. All of these characteristics make the catalyst synthesized by successive infiltration to have higher catalytic activity for soot combustion than the Ni-impregnated CeO2 catalyst.


Asunto(s)
Cerio , Hollín , Catálisis , Oxidación-Reducción , Especies Reactivas de Oxígeno
10.
ACS Appl Mater Interfaces ; 11(40): 36763-36773, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31535557

RESUMEN

Honeycomb-shaped cordierite monoliths are widely used as supports for a large number of industrial applications. However, the high manufacturing cost of cordierite monoliths only justifies its use for high temperatures and aggressive chemical environments, demanding applications where the economic benefit obtained exceeds the manufacturing costs. For low demanding applications, such as the preferential oxidation of CO (CO-PrOx), alternative materials can be proposed to reduce manufacturing costs. Polymeric monoliths would be an interesting low-cost alternative; however, the limitations of the active phase incorporation to the polymeric support must be overcome. In this work, the implementation and use of polymeric monolithic structures obtained by three-dimensional printing to support CuO/CeO2 catalysts for CO-PrOx have been studied. Several approaches were used to anchor the active phase into the polymeric monoliths, such as adding inorganic materials (carbon or silica) to the polymer previous to the printing process, chemical attack with solvents of the printed resin before or during the active phase incorporation, and consecutive impregnation and modification of the channel wall design. Among those approaches, best results were obtained by the addition of silica and by channel modification. Independent of the strategy followed, a subsequent thermal treatment in N2 was required to soften the resin and favor the active phase anchoring. However, catalyst particles become embedded on the polymeric resin being not active, and thus, a final cleaning thermal treatment under air was needed to recover the active phase activity, after which the supported active phase demonstrated good catalytic activity, stability, and reusability.

11.
J Hazard Mater ; 368: 638-643, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30731363

RESUMEN

An improved honeycomb-like monolith with asymmetrical channels, where the channels section decrease along the monolith, was fabricated using a template prepared by 3D printing. A reference honeycomb monolith was also prepared in the same way but with conventional straight channels. Cu/Ceria active phase was loaded on these supports, and SEM-EDX, Raman spectroscopy and XRD showed that the supported active phase is similar on both monoliths. The supported catalysts were tested for CO oxidation in excess oxygen and for preferential CO oxidation in H2-rich mixtures (CO-PROX), and the catalyst with the improved support achieved higher conversions in both reactions. The supported catalyst with asymmetrical channels has two benefits with regard to the counterpart catalyst with conventional symmetrical channels: improves the reaction rate with regard to the conventional one because fits better to the equation rate, and favors the turbulent regime of gases with regard to the laminar flow that prevails in symmetrical channels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...