Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8649, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39369004

RESUMEN

Electrolytes play a critical role in designing next-generation battery systems, by allowing efficient ion transfer, preventing charge transfer, and stabilizing electrode-electrolyte interfaces. In this work, we develop a differentiable geometric deep learning (GDL) model for chemical mixtures, DiffMix, which is applied in guiding robotic experimentation and optimization towards fast-charging battery electrolytes. In particular, we extend mixture thermodynamic and transport laws by creating GDL-learnable physical coefficients. We evaluate our model with mixture thermodynamics and ion transport properties, where we show improved prediction accuracy and model robustness of DiffMix than its purely data-driven variants. Furthermore, with a robotic experimentation setup, Clio, we improve ionic conductivity of electrolytes by over 18.8% within 10 experimental steps, via differentiable optimization built on DiffMix gradients. By combining GDL, mixture physics laws, and robotic experimentation, DiffMix expands the predictive modeling methods for chemical mixtures and enables efficient optimization in large chemical spaces.

2.
Nat Commun ; 13(1): 5454, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167832

RESUMEN

Developing high-energy and efficient battery technologies is a crucial aspect of advancing the electrification of transportation and aviation. However, battery innovations can take years to deliver. In the case of non-aqueous battery electrolyte solutions, the many design variables in selecting multiple solvents, salts and their relative ratios make electrolyte optimization time-consuming and laborious. To overcome these issues, we propose in this work an experimental design that couples robotics (a custom-built automated experiment named "Clio") to machine-learning (a Bayesian optimization-based experiment planner named "Dragonfly"). An autonomous optimization of the electrolyte conductivity over a single-salt and ternary solvent design space identifies six fast-charging non-aqueous electrolyte solutions in two work-days and forty-two experiments. This result represents a six-fold time acceleration compared to a random search performed by the same automated experiment. To validate the practical use of these electrolytes, we tested them in a 220 mAh graphite∣∣LiNi0.5Mn0.3Co0.2O2 pouch cell configuration. All the pouch cells containing the robot-developed electrolytes demonstrate improved fast-charging capability against a baseline experiment that uses a non-aqueous electrolyte solution selected a priori from the design space.

3.
J Phys Chem A ; 120(11): 1933-43, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-26950828

RESUMEN

The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.


Asunto(s)
Energía Solar , Modelos Teóricos , Espectrofotometría Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA