Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
In Silico Pharmacol ; 12(1): 37, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706885

RESUMEN

The major challenge in the development of affordable medicines from natural sources is the unavailability of logical protocols to explain their mechanism of action in biological targets. FimH (Type 1 fimbrin with D-mannose specific adhesion property), a lectin on E. coli cell surface is a promising target to combat the urinary tract infection (UTI). The present study aimed at predicting the inhibitory capacity of saccharides on FimH. As mannosides are considered FimH inhibitors, the readily accessible saccharides from the PubChem collection were utilized. The artificial neural networks (ANN)-based machine learning algorithm Self-organizing map (SOM) has been successfully employed in predicting active molecules as they could discover relationships through self-organization for the ligand-based virtual screening. Docking was used for the structure-based virtual screening and molecular dynamic simulation for validation. The result revealed that the predicted molecules malonyl hexose and mannosyl glucosyl glycerate exhibit exactly similar binding interactions and better docking scores as that of the reference bioassay active, heptyl mannose. The pharmacokinetic profile matches that of the selected bioflavonoids (quercetin malonyl hexose, kaempferol malonyl hexose) and has better values than the control drug bioflavonoid, monoxerutin. Thus, these two molecules can effectively inhibit type 1 fimbrial adhesin, as antibiotics against E. coli and can be explored as a prophylactic against UTIs. Moreover, this investigation can pave the way to the exploration of the potential benefits of plant-based treatments. Supplementary Information: The online version contains supplementary material available at 10.1007/s40203-024-00212-5.

2.
Carbohydr Res ; 541: 109147, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38781716

RESUMEN

The intricate nature of carbohydrates, particularly monosaccharides, stems from the existence of several chiral centers within their tertiary structures. Predicting and characterizing the molecular geometries and electrostatic landscapes of these substances is difficult due to their complex electrical properties. Moreover, these structures can display a substantial degree of conformational flexibility due to the presence of many rotatable bonds. Moreover, identifying and distinguishing between D and L enantiomers of monosaccharides presents a significant analytical obstacle since there is a need for empirically measurable properties that can distinguish them. This work uses Principal Component Analysis (PCA) to explore the chemical information included in 3D descriptors in order to comprehend the conformational space of d-Mannose stereoisomers. The isomers may be discriminated by utilizing 3D matrix-based indices, geometrical descriptors, and RDF descriptors. The isomers can be distinguished by descriptors, such as the Harary-like index from the reciprocal squared geometrical matrix (H_RG), Harary-like index from Coulomb matrix (H_Coulomb), Wiener-like index from Coulomb matrix (Wi_Coulomb), Wiener-like index from geometrical matrix (Wi_G), Graph energy from Coulomb matrix (SpAbs_Coulomb), Spectral absolute deviation from Coulomb matrix (SpAD_Coulomb), and Spectral positive sum from Coulomb matrix (SpPos_Coulomb). Among these descriptors, the first two, H_RG and H_Coulomb, perform the best in differentiation among the 3D-Matrix-Based Descriptors (3D-MBD) class. The results obtained from this study provide a significant chemical insight into the structural characteristics of the compounds inside the graph theoretical framework. These findings are likely to serve as the basis for developing new methods for analytical experiments.

3.
Med Chem Res ; 32(3): 391-408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36694836

RESUMEN

There are a plethora of antibiotic resistance cases and humans are marching towards another big survival test of evolution along with drastic climate change and infectious diseases. Ever since the first antibiotic [penicillin], and the myriad of vaccines, we were privileged to escape many infectious disease threats. The survival technique of pathogens seems rapidly changing and sometimes mimicking our own systems in such a perfect manner that we are left unarmed against them. Apart from searching for natural alternatives, repurposing existing drugs more effectively is becoming a familiar approach to new therapeutic opportunities. The ingenious use of revolutionary artificial intelligence-enabled drug discovery techniques is coping with the speed of such alterations. D-Mannose is a great hope as a nutraceutical in drug discovery, against CDG, diabetes, obesity, lung disease, and autoimmune diseases and recent findings of anti-tumor activity make it interesting along with its role in drug delivery enhancing techniques. A very unique work done in the present investigation is the collection of data from the ChEMBL database and presenting the targetable proteins on pathogens as well as on humans. It shows Mannose has 50 targets and the majority of them are on human beings. The structure and conformation of certain monosaccharides have a decisive role in receptor pathogen interactions and here we attempt to review the multifaceted roles of Mannose sugar, its targets associated with different diseases, as a natural molecule having many success stories as a drug and future hope for disease management.

4.
Appl Biochem Biotechnol ; 194(10): 4511-4529, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35507249

RESUMEN

Furin, a pro-protein convertase, plays a significant role as a biological scissor in bacterial, viral, and even mammalian substrates which in turn decides the fate of many viral and bacterial infections along with the numerous ailments caused by cancer, diabetes, inflammations, and neurological disorders. In the wake of the current pandemic caused by the virus SARS-CoV-2, furin has become the center of attraction for researchers as the spike protein contains a polybasic furin cleavage site. In the present work, we have searched for novel inhibitors against this interesting human target from FDA-approved antiviral. To enhance the selection of new inhibitors, we employed Kohonen's artificial neural network-based self-organizing maps for ligand-based virtual screening. Promising results were obtained which can help in drug repurposing and network pharmacology studies can address the errors generated due to promiscuity/polypharmacology. We found 15 existing FDA antiviral drugs having the potential to inhibit furin. Among these, six compounds have targets on important human proteins (LDLR, FCGR1A, PCK1, TLR7, DNA, and PNP). The role of these 15 drugs inhibiting furin can be established by studying further on patients infected with number of viruses including SARS-CoV-2. Here we propose two promising candidate FDA drugs GS-441524 and Grazoprevir (MK-5172) for repurposing as inhibitors of furin. The best results were observed with GS-441524.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Adenosina/análogos & derivados , Antivirales/química , Antivirales/farmacología , Furina/genética , Humanos , Ligandos , Redes Neurales de la Computación , Polifarmacología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Receptor Toll-Like 7
5.
Inform Med Unlocked ; 30: 100951, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35475214

RESUMEN

The new severe acute respiratory syndrome coronavirus 2(SARS-CoV-2) is the etiological agent of Coronavirus disease 2019 (COVID-19), which becomes an eventual pandemic outbreak. Lack of proper therapeutic management has accelerated the researchers to repurpose existing drugs with known preclinical and toxicity profiles, which can easily enter Phase 3 or 4 or can be used directly in clinical settings. Vitamins are necessary nutrients for cell growth, function, and development. Furthermore, they play an important role in pathogen defence via cell-mediated responses and boost immunity. Using a computational approach, we intend to identify the probable inhibitory effect of all vitamins on the drug targets of COVID-19. The computational analysis demonstrated that vitamin B12 resulted in depicting suitable significant binding with furin, RNA dependent RNA polymerase (RdRp), Main proteases (Mpro), ORF3a and ORF7a and Vitamin D3 with spike protein and vitamin B9 with non structural protein 3 (NSP3). A detailed examination of vitamins suggests that vitamin B12 may be the component that reduces virulence by blocking furin which is responsible for entry of virus in the host cell. Details from the Molecular Dynamics (MD) simulation study aided in determining vitamin B12 as a possible furin inhibitor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...