Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Biosci Rep ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747277

RESUMEN

Endothelin (ET) receptor antagonists are being investigated in combination with sodium-glucose co-transporter-2 inhibitors (SGLT-2i). These drugs primarily inhibit the SGLT-2 transporter that, in humans, is thought to be mainly restricted to the renal proximal convoluted tubule, resulting in increased glucose excretion favouring improved glycaemic control and diuresis. This action reduces fluid retention with ET receptor antagonists. Studies have suggested SGLT-2 may also be expressed in cardiomyocytes of human heart. To understand the potential of combining the two classes of drugs, our aim was to compare the distribution of ET receptor sub-types in human kidney, with SGLT-2. Secondly, using the same experimental conditions, we determined if SGLT-2 expression could be detected in human heart and whether the transporter co-localised with ET receptors.  Methods: Immunocytochemistry localised SGLT-2, ETA and ETB receptors in sections of histologically normal kidney, left ventricle from patients undergoing heart transplantation or controls. Primary antisera were visualised using fluorescent microscopy. Image analysis was used to measure intensity compared with background in adjacent control sections.

 Results: As expected, SGLT-2 localised to epithelial cells of the proximal convoluted tubules, and co-localised with both ET receptor sub-types. Similarly, ETA receptors predominated in cardiomyocytes; low (compared to kidney but above background) positive staining was also detected for SGLT-2.

 Discussion: Whether low levels of SGLT-2 have a (patho)physiological role in cardiomyocytes is not known but results suggest the effect of direct blockade of sodium (and glucose) influx via SGLT-2 inhibition in cardiomyocytes should be explored, with potential for additive effects with ETA antagonists.

2.
Front Pharmacol ; 15: 1369489, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655187

RESUMEN

Introduction: Pulmonary arterial hypertension (PAH) is characterised by endothelial dysfunction and pathological vascular remodelling, resulting in the occlusion of pulmonary arteries and arterioles, right ventricular hypertrophy, and eventually fatal heart failure. Targeting the apelin receptor with the novel, G protein-biased peptide agonist, MM07, is hypothesised to reverse the developed symptoms of elevated right ventricular systolic pressure and right ventricular hypertrophy. Here, the effects of MM07 were compared with the clinical standard-of-care endothelin receptor antagonist macitentan. Methods: Male Sprague-Dawley rats were randomised and treated with either normoxia/saline, or Sugen/hypoxia (SuHx) to induce an established model of PAH, before subsequent treatment with either saline, macitentan (30 mg/kg), or MM07 (10 mg/kg). Rats were then anaesthetised and catheterised for haemodynamic measurements, and tissues collected for histopathological assessment. Results: The SuHx/saline group presented with significant increases in right ventricular hypertrophy, right ventricular systolic pressure, and muscularization of pulmonary arteries compared to normoxic/saline controls. Critically, MM07 was as at least as effective as macitentan in significantly reversing detrimental structural and haemodynamic changes after 4 weeks of treatment. Discussion: These results support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.

3.
Nucleic Acids Res ; 52(D1): D1438-D1449, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37897341

RESUMEN

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb; https://www.guidetopharmacology.org) is an open-access, expert-curated, online database that provides succinct overviews and key references for pharmacological targets and their recommended experimental ligands. It includes over 3039 protein targets and 12 163 ligand molecules, including approved drugs, small molecules, peptides and antibodies. Here, we report recent developments to the resource and describe expansion in content over the six database releases made during the last two years. The database update section of this paper focuses on two areas relating to important global health challenges. The first, SARS-CoV-2 COVID-19, remains a major concern and we describe our efforts to expand the database to include a new family of coronavirus proteins. The second area is antimicrobial resistance, for which we have extended our coverage of antibacterials in partnership with AntibioticDB, a collaboration that has continued through support from GARDP. We discuss other areas of curation and also focus on our external links to resources such as PubChem that bring important synergies to the resources.


Asunto(s)
Bases de Datos Farmacéuticas , Descubrimiento de Drogas , Proteínas , Ligandos
4.
Br J Pharmacol ; 180 Suppl 2: S1-S22, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123153

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Bases de Datos Factuales , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares
5.
Br J Pharmacol ; 180 Suppl 2: S23-S144, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123151

RESUMEN

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (https://www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.16177. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Receptores Acoplados a Proteínas G , Humanos , Ligandos , Canales Iónicos/química , Receptores Citoplasmáticos y Nucleares
6.
Cardiovasc Res ; 119(17): 2683-2696, 2023 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-37956047

RESUMEN

Cardiovascular disease is the leading cause of death worldwide. Its prevalence is rising due to ageing populations and the increasing incidence of diseases such as chronic kidney disease, obesity, and diabetes that are associated with elevated cardiovascular risk. Despite currently available treatments, there remains a huge burden of cardiovascular disease-associated morbidity for patients and healthcare systems, and newer treatments are needed. The apelin system, comprising the apelin receptor and its two endogenous ligands apelin and elabela, is a broad regulator of physiology that opposes the actions of the renin-angiotensin and vasopressin systems. Activation of the apelin receptor promotes endothelium-dependent vasodilatation and inotropy, lowers blood pressure, and promotes angiogenesis. The apelin system appears to protect against arrhythmias, inhibits thrombosis, and has broad anti-inflammatory and anti-fibrotic actions. It also promotes aqueous diuresis through direct and indirect (central) effects in the kidney. Thus, the apelin system offers therapeutic promise for a range of cardiovascular, kidney, and metabolic diseases. This review will discuss current cardiovascular disease targets of the apelin system and future clinical utility of apelin receptor agonism.


Asunto(s)
Apelina , Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Apelina/metabolismo , Receptores de Apelina/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Sistema Cardiovascular/metabolismo , Corazón
7.
Br J Pharmacol ; 180(15): 1899-1929, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37197802

RESUMEN

Antimalarial drug discovery has until recently been driven by high-throughput phenotypic cellular screening, allowing millions of compounds to be assayed and delivering clinical drug candidates. In this review, we will focus on target-based approaches, describing recent advances in our understanding of druggable targets in the malaria parasite. Targeting multiple stages of the Plasmodium lifecycle, rather than just the clinically symptomatic asexual blood stage, has become a requirement for new antimalarial medicines, and we link pharmacological data clearly to the parasite stages to which it applies. Finally, we highlight the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY, a web resource developed for the malaria research community that provides open and optimized access to published data on malaria pharmacology.


Asunto(s)
Antimaláricos , Malaria , Humanos , Malaria/tratamiento farmacológico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento
8.
Front Endocrinol (Lausanne) ; 14: 1139121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967803

RESUMEN

Introduction: The apelin receptor binds two distinct endogenous peptides, apelin and ELA, which act in an autocrine/paracrine manner to regulate the human cardiovascular system. As a class A GPCR, targeting the apelin receptor is an attractive therapeutic strategy. With improvements in imaging techniques, and the stability and brightness of dyes, fluorescent ligands are becoming increasingly useful in studying protein targets. Here, we describe the design and validation of four novel fluorescent ligands; two based on [Pyr1]apelin-13 (apelin488 and apelin647), and two based on ELA-14 (ELA488 and ELA647). Methods: Fluorescent ligands were pharmacologically assessed using radioligand and functional in vitro assays. Apelin647 was validated in high content imaging and internalisation studies, and in a clinically relevant human embryonic stem cell-derived cardiomyocyte model. Apelin488 and ELA488 were used to visualise apelin receptor binding in human renal tissue. Results: All four fluorescent ligands retained the ability to bind and activate the apelin receptor and, crucially, triggered receptor internalisation. In high content imaging studies, apelin647 bound specifically to CHO-K1 cells stably expressing apelin receptor, providing proof-of-principle for a platform that could screen novel hits targeting this GPCR. The ligand also bound specifically to endogenous apelin receptor in stem cell-derived cardiomyocytes. Apelin488 and ELA488 bound specifically to apelin receptor, localising to blood vessels and tubules of the renal cortex. Discussion: Our data indicate that the described novel fluorescent ligands expand the pharmacological toolbox for studying the apelin receptor across multiple platforms to facilitate drug discovery.


Asunto(s)
Hormonas Peptídicas , Cricetinae , Animales , Humanos , Receptores de Apelina/metabolismo , Ligandos , Hormonas Peptídicas/metabolismo , Cricetulus , Unión Proteica
9.
Cell ; 186(2): 240-242, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36603580

RESUMEN

The potent vasoconstrictor peptide endothelin-1 has long been recognized as a physiological regulator of vascular tone. However, pharmacological blockade of the endothelin-1 pathway has few proven indications thus far. A recent clinical trial for resistant hypertension published in The Lancet may yet herald a new era for endothelin receptor antagonists into the clinical mainstream.


Asunto(s)
Endotelina-1 , Hipertensión , Humanos , Endotelina-1/fisiología , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Endotelinas/fisiología , Antagonistas de los Receptores de Endotelina/uso terapéutico
10.
J Am Coll Cardiol ; 81(4): 336-354, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36697134

RESUMEN

BACKGROUND: Assessing inflammatory disease activity in large vessel vasculitis (LVV) can be challenging by conventional measures. OBJECTIVES: We aimed to investigate somatostatin receptor 2 (SST2) as a novel inflammation-specific molecular imaging target in LVV. METHODS: In a prospective, observational cohort study, in vivo arterial SST2 expression was assessed by positron emission tomography/magnetic resonance imaging (PET/MRI) using 68Ga-DOTATATE and 18F-FET-ßAG-TOCA. Ex vivo mapping of the imaging target was performed using immunofluorescence microscopy; imaging mass cytometry; and bulk, single-cell, and single-nucleus RNA sequencing. RESULTS: Sixty-one participants (LVV: n = 27; recent atherosclerotic myocardial infarction of ≤2 weeks: n = 25; control subjects with an oncologic indication for imaging: n = 9) were included. Index vessel SST2 maximum tissue-to-blood ratio was 61.8% (P < 0.0001) higher in active/grumbling LVV than inactive LVV and 34.6% (P = 0.0002) higher than myocardial infarction, with good diagnostic accuracy (area under the curve: ≥0.86; P < 0.001 for both). Arterial SST2 signal was not elevated in any of the control subjects. SST2 PET/MRI was generally consistent with 18F-fluorodeoxyglucose PET/computed tomography imaging in LVV patients with contemporaneous clinical scans but with very low background signal in the brain and heart, allowing for unimpeded assessment of nearby coronary, myocardial, and intracranial artery involvement. Clinically effective treatment for LVV was associated with a 0.49 ± 0.24 (standard error of the mean [SEM]) (P = 0.04; 22.3%) reduction in the SST2 maximum tissue-to-blood ratio after 9.3 ± 3.2 months. SST2 expression was localized to macrophages, pericytes, and perivascular adipocytes in vasculitis specimens, with specific receptor binding confirmed by autoradiography. SSTR2-expressing macrophages coexpressed proinflammatory markers. CONCLUSIONS: SST2 PET/MRI holds major promise for diagnosis and therapeutic monitoring in LVV. (PET Imaging of Giant Cell and Takayasu Arteritis [PITA], NCT04071691; Residual Inflammation and Plaque Progression Long-Term Evaluation [RIPPLE], NCT04073810).


Asunto(s)
Aterosclerosis , Arteritis de Células Gigantes , Infarto del Miocardio , Arteritis de Takayasu , Humanos , Receptores de Somatostatina , Estudios Prospectivos , Fluorodesoxiglucosa F18 , Inflamación/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética , Vasos Coronarios/patología , Aterosclerosis/diagnóstico por imagen , Radiofármacos/farmacología
11.
Cardiovasc Res ; 119(2): 587-598, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-36239923

RESUMEN

AIMS: The apelin receptor, a G protein-coupled receptor, has emerged as a key regulator of cardiovascular development, physiology, and disease. However, there is a lack of suitable human in vitro models to investigate the apelinergic system in cardiovascular cell types. For the first time we have used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and a novel inducible knockdown system to examine the role of the apelin receptor in both cardiomyocyte development and to determine the consequences of loss of apelin receptor function as a model of disease. METHODS AND RESULTS: Expression of the apelin receptor and its ligands in hESCs and hESC-CMs was determined. hESCs carrying a tetracycline-inducible short hairpin RNA targeting the apelin receptor were generated using the sOPTiKD system. Phenotypic assays characterized the consequences of either apelin receptor knockdown before hESC-CM differentiation (early knockdown) or in 3D engineered heart tissues as a disease model (late knockdown). hESC-CMs expressed the apelin signalling system at a similar level to the adult heart. Early apelin receptor knockdown decreased cardiomyocyte differentiation efficiency and prolonged voltage sensing, associated with asynchronous contraction. Late apelin receptor knockdown had detrimental consequences on 3D engineered heart tissue contractile properties, decreasing contractility and increasing stiffness. CONCLUSIONS: We have successfully knocked down the apelin receptor, using an inducible system, to demonstrate a key role in hESC-CM differentiation. Knockdown in 3D engineered heart tissues recapitulated the phenotype of apelin receptor down-regulation in a failing heart, providing a potential platform for modelling heart failure and testing novel therapeutic strategies.


Asunto(s)
Células Madre Embrionarias Humanas , Miocitos Cardíacos , Adulto , Humanos , Miocitos Cardíacos/metabolismo , Apelina/genética , Apelina/metabolismo , Receptores de Apelina/genética , Receptores de Apelina/metabolismo , Células Madre Embrionarias/metabolismo , Diferenciación Celular
12.
J Interv Cardiol ; 2022: 9154048, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262459

RESUMEN

Objective: Coronary microvascular dysfunction (CMD) can complicate successful percutaneous coronary intervention (PCI). The potent endogenous vasoconstrictor peptide Endothelin-1 (ET-1) may be an important mediator. To investigate the mechanism, we sought to define the peri-procedural trans-myocardial gradient (TMG-coronary sinus minus aortic root levels) of ET-1 and its precursor peptide - Big ET-1. We then assessed correlation with pressure-wire indices of CMD: coronary flow reserve (CFR) and index of microvascular resistance (IMR). Methods: Paired blood samples from the guide catheter and coronary sinus were collected before and after pressure-wire-guided PCI from patients with stable angina. Plasma was analysed using a specific enzyme-linked immunosorbent assay for quantification of ET-1 peptides and correlated with pressure-wire data. Non normally distributed continuous variables are presented as median [IQR]. Results: ET-1 and Big ET-1 increased post-PCI in the aorta (ET-1: 0.98 [0.76-1.26] pg/ml to 1.20 [1.03-1.67] pg/ml, P < 0.001 and Big ET-1: 2.74 [1.78-2.50] pg/ml to 3.36 [2.33-3.97] pg/ml, P < 0.001) and coronary sinus (ET-1: 1.00 [0.81-1.28] pg/ml to 1.09 [0.91-1.30] pg/ml, P = 0.03 and Big ET-1: 2.89 [1.95-3.83] pg/ml to 3.56 [2.66-4.83] pg/ml, P = 0.01). TMG of ET-1 shifted negatively compared with baseline following PCI reflecting significantly increased extraction (0.03 [-0.12-0.17] pg/ml pre-PCI versus -0.16 [-0.36-0.07] pg/ml post-PCI, P = 0.01). Increased ET-1 trans-myocardial extraction correlated with higher IMR (Pearson's r = 0.293, P = 0.02) and increased hyperemic transit time (Pearson's r = 0.333, P < 0.01). In subgroup analysis, mean ET-1 trans-myocardial extraction was higher amongst patients with high IMR compared with low IMR (0.73 pg/ml, SD:0.78 versus 0.17 pg/ml, SD:0.42, P = 0.02). There was additionally a numerical trend towards increased ET-1 trans-myocardial extraction in subgroups of patients with low CFR and in patients with Type 4a Myocardial Infarction, albeit not reaching statistical significance. Conclusions: Circulating ET-1 increases post-PCI and upregulated ET-1 trans-myocardial extraction contributes to increased microcirculatory resistance.


Asunto(s)
Angina Estable , Intervención Coronaria Percutánea , Humanos , Microcirculación , Endotelina-1 , Vasoconstrictores , Resistencia Vascular , Circulación Coronaria
13.
Br J Clin Pharmacol ; 88(12): 5295-5306, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35748053

RESUMEN

AIMS: Chronic kidney disease (CKD) is common and cardiovascular disease (CVD) is its commonest complication. The apelin system is a potential therapeutic target for CVD but data relating to apelin in CKD are limited. We examined expression of the apelin system in human kidney, and investigated apelin and Elabela/Toddler (ELA), the endogenous ligands for the apelin receptor, in patients with CKD. METHODS: Using autoradiography, immunohistochemistry and enzyme-linked immunosorbent assay, we assessed expression of apelin, ELA and the apelin receptor in healthy human kidney, and measured plasma apelin and ELA in 155 subjects (128 patients with CKD, 27 matched controls) followed up for 5 years. Cardiovascular assessments included blood pressure, arterial stiffness (pulse wave velocity) and brachial artery flow-mediated dilation. Surrogate markers of endothelial function (plasma asymmetric dimethylarginine and endothelin-1) and inflammation (C-reactive protein and interleukin-6) were measured. RESULTS: The apelin system was expressed in healthy human kidney, throughout the nephron. Plasma apelin concentrations were 60% higher in women than men (6.48 [3.62-9.89] vs. 3.95 [2.02-5.85] pg/mL; P < .0001), and increased as glomerular filtration rate declined (R = -0.41, P < .0001), and albuminuria rose (R = 0.52, P < .0001). Plasma apelin and ELA were associated with vascular dysfunction. Plasma apelin associated independently with a 50% decline in glomerular filtration rate at 5 years. CONCLUSION: We show for the first time that the apelin system is expressed in healthy human kidney. Plasma apelin is elevated in CKD and may be a potential biomarker of risk of decline in kidney function. Clinical studies exploring the therapeutic potential of apelin agonism in CKD are warranted.


Asunto(s)
Enfermedades Cardiovasculares , Hormonas Peptídicas , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Apelina , Receptores de Apelina/metabolismo , Análisis de la Onda del Pulso , Hormonas Peptídicas/metabolismo , Riñón , Biomarcadores
14.
J Mol Cell Cardiol ; 167: 92-96, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35339512

RESUMEN

Virus induced endothelial dysregulation is a well-recognised feature of severe Covid-19 infection. Endothelin-1 (ET-1) is the most highly expressed peptide in endothelial cells and a potent vasoconstrictor, thus representing a potential therapeutic target. ET-1 plasma levels were measured in a cohort of 194 Covid-19 patients stratified according to the clinical severity of their illness. Hospitalised patients, including those who died and those developing acute myocardial or kidney injury, had significantly elevated ET-1 plasma levels during the acute phase of infection. The results support the hypothesis that endothelin receptor antagonists may provide clinical benefit for certain Covid-19 patients.


Asunto(s)
COVID-19 , Endotelina-1 , Células Endoteliales , Antagonistas de los Receptores de Endotelina , Humanos , Receptor de Endotelina A , Receptores de Endotelina , Vasoconstrictores
15.
Int J Cardiol Heart Vasc ; 39: 100980, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35242999

RESUMEN

INTRODUCTION: Microvascular angina is a common cause of ischemia with non-obstructive coronary arteries (INOCA) and limited therapeutic options are available to those affected. Endothelin-1 (ET-1) is a potent vasoconstrictor implicated in the pathophysiology of microvascular angina. A large randomised, double blinded, placebo controlled crossover trial, the PRecIsion medicine with ZibotEntan in microvascular angina (PRIZE) trial is currently underway, investigating an endothelin receptor antagonist - Zibotentan, as a new drug treatment for microvascular angina. The trial uses a 'precision medicine' approach by preferential selection of those with higher ET-1 expression conferred by the PHACTR1 minor G allele single nucleotide polymorphism (SNP). The incidence of this SNP occurs in approximately one third of the population therefore a considerable number of screened patients will be ineligible for randomisation and the treatment phase of the trial. METHODS: In the PRIZE Endothelin (ET) Sub-Study, patients screened out of the PRIZE trial will be genotyped for other genetic variants in the ET-1 pathway. These will be correlated with phenotypic characteristics including exercise tolerance, angina severity and quantitative measures of microvascular function on cardiovascular MRI as well as mechanistic data on endothelin pathway signalling. CONCLUSIONS: The study will provide a comprehensive genotype and phenotype bio-resource identifying novel ET-1 genotypes to inform the potential wider use of endothelin receptor antagonists for this indication.

16.
Nucleic Acids Res ; 50(D1): D1282-D1294, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34718737

RESUMEN

The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb; www.guidetopharmacology.org) is an open-access, expert-curated database of molecular interactions between ligands and their targets. We describe expansion in content over nine database releases made during the last two years, which has focussed on three main areas of infection. The COVID-19 pandemic continues to have a major impact on health worldwide. GtoPdb has sought to support the wider research community to understand the pharmacology of emerging drug targets for SARS-CoV-2 as well as potential targets in the host to block viral entry and reduce the adverse effects of infection in patients with COVID-19. We describe how the database rapidly evolved to include a new family of Coronavirus proteins. Malaria remains a global threat to half the population of the world. Our database content continues to be enhanced through our collaboration with Medicines for Malaria Venture (MMV) on the IUPHAR/MMV Guide to MALARIA PHARMACOLOGY (www.guidetomalariapharmacology.org). Antibiotic resistance is also a growing threat to global health. In response, we have extended our coverage of antibacterials in partnership with AntibioticDB.


Asunto(s)
Antibacterianos/farmacología , Antimaláricos/farmacología , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Antibacterianos/química , COVID-19/etiología , Curaduría de Datos , Bases de Datos Farmacéuticas , Humanos , Ligandos , Malaria/tratamiento farmacológico , Malaria/metabolismo , Interfaz Usuario-Computador , Proteínas Virales/química , Proteínas Virales/metabolismo
17.
Sci Rep ; 11(1): 24336, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34934117

RESUMEN

ACE2 is a membrane protein that regulates the cardiovascular system. Additionally, ACE2 acts as a receptor for host cell infection by human coronaviruses, including SARS-CoV-2 that emerged as the cause of the on-going COVID-19 pandemic and has brought unprecedented burden to economy and health. ACE2 binds the spike protein of SARS-CoV-2 with high affinity and shows little variation in amino acid sequence meaning natural resistance is rare. The discovery of a novel short ACE2 isoform (deltaACE2) provides evidence for inter-individual differences in SARS-CoV-2 susceptibility and severity, and likelihood of developing subsequent 'Long COVID'. Critically, deltaACE2 loses SARS-CoV-2 spike protein binding sites in the extracellular domain, and is predicted to confer reduced susceptibility to viral infection. We aimed to assess the differential expression of full-length ACE2 versus deltaACE2 in a panel of human tissues (kidney, heart, lung, and liver) that are implicated in COVID-19, and confirm ACE2 protein in these tissues. Using dual antibody staining, we show that deltaACE2 localises, and is enriched, in lung airway epithelia and bile duct epithelia in the liver. Finally, we also confirm that a fluorescently tagged SARS-CoV-2 spike protein monomer shows low binding at lung and bile duct epithelia where dACE2 is enriched.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Conductos Biliares/metabolismo , Conductos Biliares/virología , Sitios de Unión , COVID-19/patología , COVID-19/virología , Humanos , Pulmón/metabolismo , Pulmón/virología , Microscopía de Fluorescencia por Excitación Multifotónica , Unión Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Internalización del Virus
18.
Br J Pharmacol ; 178 Suppl 1: S1-S26, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529830

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15537. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Ligandos , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares
19.
Br J Pharmacol ; 178 Suppl 1: S27-S156, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34529832

RESUMEN

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15538. G protein-coupled receptors are one of the six major pharmacological targets into which the Guide is divided, with the others being: ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Farmacología , Humanos , Canales Iónicos , Ligandos , Receptores Citoplasmáticos y Nucleares , Receptores Acoplados a Proteínas G
20.
Nat Rev Nephrol ; 17(12): 840-853, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34389827

RESUMEN

Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin-angiotensin-aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.


Asunto(s)
Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Apelina/metabolismo , Receptores de Apelina/metabolismo , Humanos , Ligandos , Insuficiencia Renal Crónica/tratamiento farmacológico , Sistema Renina-Angiotensina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...