Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Microorganisms ; 9(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418927

RESUMEN

Firmicutes is almost a ubiquitous phylum. Several genera of this group, for instance, Geobacillus, are recognized for decomposing plant organic matter and for producing thermostable ligninolytic enzymes. Amplicon sequencing was used in this study to determine the prevalence and genetic diversity of the Firmicutes in two distinctly related environmental samples-South Dakota Landfill Compost (SDLC, 60 °C), and Sanford Underground Research Facility sediments (SURF, 45 °C). Although distinct microbial community compositions were observed, there was a dominance of Firmicutes in both the SDLC and SURF samples, followed by Proteobacteria. The abundant classes of bacteria in the SDLC site, within the phylum Firmicutes, were Bacilli (83.2%), and Clostridia (2.9%). In comparison, the sample from the SURF mine was dominated by the Clostridia (45.8%) and then Bacilli (20.1%). Within the class Bacilli, the SDLC sample had more diversity (a total of 11 genera with more than 1% operational taxonomic unit, OTU). On the other hand, SURF samples had just three genera, about 1% of the total population: Bacilli, Paenibacillus, and Solibacillus. With specific regard to Geobacillus, it was found to be present at a level of 0.07% and 2.5% in SURF and SDLC, respectively. Subsequently, culture isolations of endospore-forming Firmicutes members from these samples led to the isolation of a total of 117 isolates. According to colony morphologies, and identification based upon 16S rRNA and gyrB gene sequence analysis, we obtained 58 taxonomically distinct strains. Depending on the similarity indexes, a gyrB sequence comparison appeared more useful than 16S rRNA sequence analysis for inferring intra- and some intergeneric relationships between the isolates.

2.
Bioresour Technol ; 314: 123892, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32718806

RESUMEN

This work investigated the electrocatalytic activity of a thermophilic methanogenic consortia (TMC) for developing a bioelectrosynthesis process to convert food and paper wastes to methane. Electroanalytical techniques were used to analyze the electrocatalytic activity of the TMC biofilm formed onto the electrodes. The developed electromethanogenesis process enhanced the yield of methane by 54.7% than control experiments. Scanning electron micrographs of the TMC bioelectrodes showed that the electrosynthesis process accelerates biofilm formation onto the electrodes leading to enhanced direct electron transfer reactions at electrode-electrolyte interface. This study will help in developing a novel approach for valorization of food and paper waste to biofuels.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Anaerobiosis , Biocombustibles , Metano
3.
Microorganisms ; 8(3)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131386

RESUMEN

Efficient and sustainable biochemical production using low-cost waste assumes considerable industrial and ecological importance. Solid organic wastes (SOWs) are inexpensive, abundantly available resources and their bioconversion to volatile fatty acids, especially acetate, aids in relieving the requirements of pure sugars for microbial biochemical productions in industries. Acetate production from SOW that utilizes the organic carbon of these wastes is used as an efficient solid waste reduction strategy if the environmental factors are optimized. This study screens and optimizes influential factors (physical and chemical) for acetate production by a thermophilic acetogenic consortium using two SOWs-cafeteria wastes and corn stover. The screening experiment revealed significant effects of temperature, bromoethane sulfonate, and shaking on acetate production. Temperature, medium pH, and C:N ratio were further optimized using statistical optimization with response surface methodology. The maximum acetate concentration of 8061 mg L-1 (>200% improvement) was achieved at temperature, pH, and C:N ratio of 60 °C, 6, 25, respectively, and acetate accounted for more than 85% of metabolites. This study also demonstrated the feasibility of using acetate-rich fermentate (obtained from SOWs) as a substrate for the growth of industrially relevant yeast Yarrowia lipolytica, which can convert acetate into higher-value biochemicals.

4.
Bioresour Technol ; 258: 270-278, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29544100

RESUMEN

Residual solid and liquid streams from the one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process were treated with two separate biochemical routes for renewable energy transformation. The solid residual stream was subjected to thermophilic anaerobic digestion (TAD), which produced 95 ±â€¯7 L methane kg-1 volatile solid with an overall energy efficiency of 12.9 ±â€¯1.7%. A methanotroph, Methyloferula sp., was deployed for oxidation of mixed TAD biogas into methanol. The residual liquid stream from CRUDE process was used in a Microbial Fuel Cell (MFC) to produce electricity. Material balance calculations confirmed the integration of biochemical routes (i.e. CRUDE, TAD, and MFC) for developing a sustainable approach of energy regeneration. The current work demonstrates the utilization of different residual streams originated after food waste processing to release minimal organic load to the environment.


Asunto(s)
Biocombustibles , Reactores Biológicos , Metano , Anaerobiosis , Electricidad , Fermentación , Metanol , Eliminación de Residuos
5.
Int J Biol Macromol ; 108: 1176-1184, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28919530

RESUMEN

Bacillus nealsonii PN-11 produces thermo-alkalistable mannanase and protease active in wide temperature and pH range. Optimization of coproduction of protease and mannanase from this strain and application of cocktail of these enzymes as detergent additives were studied. On optimization mannanase yield of 834Ug-1 (11.12 fold increase) and protease yield of 70Ug-1 (4.7 fold increase) could be obtained in a single fermentation. Purification and characterization of mannanase have been done earlier and protease was done during this study and has a molecular mass of 48kDa. pH and temperature optima for protease were 10.0 and 65°C respectively. It was completely stable at 60°C for 3h and retained >80% of activity at pH 11.0 for 1h. Both the enzymes were compatible with detergents individually and in a combination. The wash performance of the detergent on different type of stains improved when protease or mannanase were used individually. However destaining was more efficient when a combination of mannanase and protease was used.


Asunto(s)
Bacillus/metabolismo , Biotecnología/métodos , Detergentes/química , Fermentación , Péptido Hidrolasas/biosíntesis , beta-Manosidasa/biosíntesis , Quelantes/farmacología , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Oxidantes/farmacología , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Sustancias Reductoras/farmacología , Tensoactivos/farmacología , beta-Manosidasa/química , beta-Manosidasa/metabolismo
6.
Bioresour Technol ; 244(Pt 1): 733-740, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28822285

RESUMEN

The one-pot CRUDE (Conversion of Raw and Untreated Disposal into Ethanol) process was developed for simultaneous hydrolysis and fermentation of unprocessed food waste into ethanol using thermophilic (growing at 65°C) anaerobic bacteria. Unlike existing waste to energy technologies, the CRUDE process obviates the need for any pre-treatment or enzyme addition. A High-Temperature-High-Pressure (HTHP) distillation technique was also applied that facilitated efficient use of fermentation medium, inoculum recycling, and in-situ ethanol collection. For material balancing of the process, each characterized component was represented in terms of C-mol. Recovery of 94% carbon at the end confirmed the operational efficiency of CRUDE process. The overall energy retaining efficiency calculated from sugars to ethanol was 1262.7kJdryweightkg-1 of volatile solids using HTHP. These results suggest that the CRUDE process can be a starting point for the development of a commercial ethanol production process.


Asunto(s)
Bacterias Anaerobias , Etanol , Fermentación , Archaea , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA