Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 21(1): e3001924, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649236

RESUMEN

Tissue-specific transcription factors (TFs) control the transcriptome through an association with noncoding regulatory regions (cistromes). Identifying the combination of TFs that dictate specific cell fate, their specific cistromes and examining their involvement in complex human traits remain a major challenge. Here, we focus on the retinal pigmented epithelium (RPE), an essential lineage for retinal development and function and the primary tissue affected in age-related macular degeneration (AMD), a leading cause of blindness. By combining mechanistic findings in stem-cell-derived human RPE, in vivo functional studies in mice and global transcriptomic and proteomic analyses, we revealed that the key developmental TFs LHX2 and OTX2 function together in transcriptional module containing LDB1 and SWI/SNF (BAF) to regulate the RPE transcriptome. Importantly, the intersection between the identified LHX2-OTX2 cistrome with published expression quantitative trait loci, ATAC-seq data from human RPE, and AMD genome-wide association study (GWAS) data, followed by functional validation using a reporter assay, revealed a causal genetic variant that affects AMD risk by altering TRPM1 expression in the RPE through modulation of LHX2 transcriptional activity on its promoter. Taken together, the reported cistrome of LHX2 and OTX2, the identified downstream genes and interacting co-factors reveal the RPE transcription module and uncover a causal regulatory risk single-nucleotide polymorphism (SNP) in the multifactorial common blinding disease AMD.


Asunto(s)
Degeneración Macular , Canales Catiónicos TRPM , Humanos , Ratones , Animales , Proteínas con Homeodominio LIM/genética , Proteínas con Homeodominio LIM/metabolismo , Estudio de Asociación del Genoma Completo , Proteómica , Degeneración Macular/genética , Degeneración Macular/metabolismo , Diferenciación Celular , Epitelio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Canales Catiónicos TRPM/genética , Factores de Transcripción Otx/genética , Factores de Transcripción Otx/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo
2.
Dev Biol ; 468(1-2): 80-92, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32950463

RESUMEN

The interplay between signaling molecules and transcription factors during retinal development is key to controlling the correct number of retinal cell types. Zeb2 (Sip1) is a zinc-finger multidomain transcription factor that plays multiple roles in central and peripheral nervous system development. Haploinsufficiency of ZEB2 causes Mowat-Wilson syndrome, a congenital disease characterized by intellectual disability, epilepsy and Hirschsprung disease. In the developing retina, Zeb2 is required for generation of horizontal cells and the correct number of interneurons; however, its potential function in controlling gliogenic versus neurogenic decisions remains unresolved. Here we present cellular and molecular evidence of the inhibition of Müller glia cell fate by Zeb2 in late stages of retinogenesis. Unbiased transcriptomic profiling of control and Zeb2-deficient early-postnatal retina revealed that Zeb2 functions in inhibiting Id1/2/4 and Hes1 gene expression. These neural progenitor factors normally inhibit neural differentiation and promote Müller glia cell fate. Chromatin immunoprecipitation (ChIP) supported direct regulation of Id1 by Zeb2 in the postnatal retina. Reporter assays and ChIP analyses in differentiating neural progenitors provided further evidence that Zeb2 inhibits Id1 through inhibition of Smad-mediated activation of Id1 transcription. Together, the results suggest that Zeb2 promotes the timely differentiation of retinal interneurons at least in part by repressing BMP-Smad/Notch target genes that inhibit neurogenesis. These findings show that Zeb2 integrates extrinsic cues to regulate the balance between neuronal and glial cell types in the developing murine retina.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Células Ependimogliales/metabolismo , Interneuronas/metabolismo , Retina/embriología , Transducción de Señal , Proteínas Smad/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Ratones , Ratones Transgénicos , Proteínas Smad/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética
3.
Int J Dev Biol ; 61(3-4-5): 225-234, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28621420

RESUMEN

The development of the eye has been a topic of extensive investigation, from the early studies on tissue induction to more recent breakthroughs in resolving the mechanism regulating progenitor patterning and their gradual and coordinated differentiation into diverse tissue types that function together throughout life. Among the ocular tissue types, the retinal pigmented epithelium (RPE) is at the forefront of developmental biology and stem cell research. The growing interest in this lineage stems from its importance for photoreceptor function as well as from its requirement during embryogenesis for the development of the photoreceptors and the choroid. Indeed mutations in RPE genes and epigenetic changes that occur during aging are the cause of monogenic as well as multifactorial retinal diseases. Importantly, the RPE is readily generated from stem cells, and these stem cell-derived RPE cells are currently being tested in clinical trials for transplantation in cases of retinal dystrophies; they also constitute an important model to study developmental processes in vitro. This review summarizes recent advances in our understanding of RPE development and its requirement for the development of photoreceptors and choroidal vasculature. We discuss the contribution of basic findings to therapeutic applications and the future challenges in uncovering developmental processes and mimicking them ex vivo to further advance research and therapy of retinal disorders.


Asunto(s)
Biología Evolutiva/tendencias , Redes Reguladoras de Genes , Epitelio Pigmentado de la Retina/embriología , Investigación Biomédica Traslacional/tendencias , Animales , Diferenciación Celular , Coroides/metabolismo , Desarrollo Embrionario , Epigénesis Genética , Humanos , Retina/embriología , Degeneración Retiniana , Epitelio Pigmentado de la Retina/metabolismo , Células Madre/citología , Células Madre/metabolismo
4.
Oncotarget ; 8(16): 27380-27392, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28423708

RESUMEN

Advanced ovarian cancer is an incurable disease. Thus, novel therapies are required. We wished to identify new therapeutic targets for ovarian cancer. ShRNA screen performed in 42 ovarian cancer cell lines identified the centriolar replication factor STIL as an essential gene for ovarian cancer cells. This was verified in-vivo in orthotopic human ovarian cancer mouse models. STIL depletion by administration of siRNA in neutral liposomes resulted in robust anti-tumor effect that was further enhanced in combination with cisplatin. Consistent with this finding, STIL depletion enhanced the extent of DNA double strand breaks caused by DNA damaging agents. This was associated with centrosomal depletion, ongoing genomic instability and enhanced formation of micronuclei. Interestingly, the ongoing DNA damage was not associated with reduced DNA repair. Indeed, we observed that depletion of STIL enhanced canonical homologous recombination repair and increased BRCA1 and RAD51 foci in response to DNA double strand breaks. Thus, inhibition of STIL significantly enhances the efficacy of DNA damaging chemotherapeutic drugs in treatment of ovarian cancer.


Asunto(s)
Antineoplásicos/farmacología , Daño del ADN/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Terapia Molecular Dirigida , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Interferencia de ARN , ARN Interferente Pequeño/genética , Reparación del ADN por Recombinación , Transducción de Señal , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Development ; 143(22): 4182-4192, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27697904

RESUMEN

The Lim domain-binding proteins are key co-factor proteins that assemble with LIM domains of the LMO/LIM-HD family to form functional complexes that regulate cell proliferation and differentiation. Using conditional mutagenesis and comparative phenotypic analysis, we analyze the function of Ldb1 and Ldb2 in mouse retinal development, and demonstrate overlapping and specific functions of both proteins. Ldb1 interacts with Lhx2 in the embryonic retina and both Ldb1 and Ldb2 play a key role in maintaining the pool of retinal progenitor cells. This is accomplished by controlling the expression of the Vsx2 and Rax, and components of the Notch and Hedgehog signaling pathways. Furthermore, the Ldb1/Ldb2-mediated complex is essential for generation of early-born photoreceptors through the regulation of Rax and Crx. Finally, we demonstrate functional redundancy between Ldb1 and Ldb2. Ldb1 can fully compensate the loss of Ldb2 during all phases of retinal development, whereas Ldb2 alone is sufficient to sustain activity of Lhx2 in both early- and late-stage RPCs and in Müller glia. By contrast, loss of Ldb1 disrupts activity of the LIM domain factors in neuronal precursors. An intricate regulatory network exists that is mediated by Ldb1 and Ldb2, and promotes RPC proliferation and multipotency; it also controls specification of mammalian retina cells.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Proteínas con Dominio LIM/fisiología , Organogénesis/genética , Retina/embriología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Mamíferos/embriología , Mamíferos/genética , Ratones , Ratones Transgénicos , Retina/citología , Retina/metabolismo , Células Madre/fisiología
6.
Sci Rep ; 6: 24296, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27075531

RESUMEN

The STIL protein is essential for centriole replication and for the non-templated, de novo centriole biogenesis that is required for mammalian embryogenesis. Here we performed quantitative biophysical and structural analysis of the central short coiled coil domain (CCD) of STIL that is critical for its function. Using biophysical, biochemical and cell biology approaches, we identified the specific residues in the CCD that mediate the oligomerization, centrosomal localization and protein interactions of STIL. We characterized the structural properties of the coiled coil peptide using circular dichroism spectroscopy and size exclusion chromatography. We identified two regions in this domain, containing eight hydrophobic residues, which mediate the coiled coil oligomerization. Mutations in these residues destabilized the coiled coil thermodynamically but in most cases did not affect its secondary structure. Reconstituting mouse embryonic fibroblasts lacking endogenous Stil, we show that STIL oligomerization mediated by these residues is not only important for the centrosomal functions of STIL during the canonical duplication process but also for de-novo formation of centrosomes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Centrosoma/metabolismo , Multimerización de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/metabolismo , Animales , Fenómenos Biofísicos , Células Cultivadas , Cromatografía en Gel , Dicroismo Circular , Humanos , Ratones , Conformación Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Proteína 1 de la Leucemia Linfocítica T Aguda
7.
Chem Sci ; 7(7): 4140-4147, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30155058

RESUMEN

Binding of metal ions is an important regulatory mechanism in proteins. Specifically, Zn2+ binding to disordered regions commonly induces a disorder to order transition and gain of structure or oligomerization. Here we show that simultaneous binding of Zn2+ ions has different effects on structured and disordered domains in the same multidomain protein. The centrosomal STIL protein bound Zn2+ ions via both its structured N-terminal domain (NTD) and disordered central region (IDR). Zn2+ binding induced structural rearrangement of the structured NTD but promoted oligomerization of the IDR. We suggest that by binding Zn2+ STIL acquires a different conformation, which allows its oligomerization and induces its activity. Sequence alignment of the oligomerization region revealed a new suggested motif, SxKxS/SxHxS/SxLxS, which may participate in STIL oligomerization. Binding of the same metal ion through a disordered and a structured domain in the same protein is a property that may have implications in regulating the protein activity. By doing so, the protein achieves two parallel outcomes: structural changes and oligomerization that can take place together. Our results describe a new important role of the delicate interplay between structure and intrinsic disorder in proteins.

8.
Cell Cycle ; 13(18): 2859-68, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25486474

RESUMEN

Although most animal cells contain centrosomes, consisting of a pair of centrioles, their precise contribution to cell division and embryonic development is unclear. Genetic ablation of STIL, an essential component of the centriole replication machinery in mammalian cells, causes embryonic lethality in mice around mid gestation associated with defective Hedgehog signaling. Here, we describe, by focused ion beam scanning electron microscopy, that STIL(-/-) mouse embryos do not contain centrioles or primary cilia, suggesting that these organelles are not essential for mammalian development until mid gestation. We further show that the lack of primary cilia explains the absence of Hedgehog signaling in STIL(-/-) cells. Exogenous re-expression of STIL or STIL microcephaly mutants compatible with human survival, induced non-templated, de novo generation of centrioles in STIL(-/-) cells. Thus, while the abscence of centrioles is compatible with mammalian gastrulation, lack of centrioles and primary cilia impairs Hedgehog signaling and further embryonic development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Centriolos/metabolismo , Cilios/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Centriolos/ultraestructura , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Embrión de Mamíferos/ultraestructura , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Microcefalia/patología , Centro Organizador de los Microtúbulos/metabolismo , Mutación/genética , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteína 1 de la Leucemia Linfocítica T Aguda
9.
FEBS Lett ; 588(21): 3808-15, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25218436

RESUMEN

The Nck adapter protein is involved in key cellular functions, such as actin polymerization and reorganization, serving as a molecular bridge between the surface complex essential for foreign antigen recognition, the T-cell antigen receptor (TCR), and the actin machinery. However, the mechanisms regulating Nck expression and functions are unknown. In this study, we revealed Nck negative regulation and demonstrated that Nck is ubiquitylated following cellular activation. We identified the molecular determinants and mediators involved in this process. Our data suggest that Nck ubiquitylation might serve as a mechanism controlling Nck-mediated effector functions during cellular activation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación hacia Abajo , Proteínas Oncogénicas/metabolismo , Ubiquitinación , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Adhesión Celular , Silenciador del Gen , Células HEK293 , Humanos , Células Jurkat , Mutación , Proteínas Oncogénicas/química , Proteínas Oncogénicas/deficiencia , Proteínas Oncogénicas/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-cbl/metabolismo , ARN Interferente Pequeño/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Dominios Homologos src
10.
Chem Commun (Camb) ; 50(40): 5245-7, 2014 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-24022511

RESUMEN

The STIL protein participates in mitosis and malignant transformation by regulating centrosomal duplication. Using biophysical methods we studied the structure and interactions of STIL. We revealed that its central domain is intrinsically disordered and mediates protein-protein interactions of STIL. The intrinsic disorder may provide STIL with the conformational flexibility required for its multitude binding.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Dicroismo Circular , Polarización de Fluorescencia , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Ubiquitina-Proteína Ligasas
11.
J Cell Sci ; 126(Pt 15): 3259-62, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23908378

RESUMEN

Located in the 16th century Wiston House in West Sussex, UK, the 'Building a Centrosome' Workshop was organised by The Company of Biologists and chaired by Fanni Gergely and David Glover (University of Cambridge). Held in March 2013, the Workshop gathered together many of the leaders in the field of centrosome biology, as well as postdocs and students who were given the opportunity to meet and interact with many of the scientists who inspired their early careers. The diverse range of speakers provided a multi-disciplinary forum for the exchange of ideas, and gave fresh impetus to tackling outstanding questions related to centrosome biology. Here, we provide an overview of the meeting and highlight the main themes that were discussed.


Asunto(s)
Centrosoma/fisiología , Animales , Humanos
12.
Mol Cell Biol ; 32(15): 3153-63, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22665495

RESUMEN

The Wiskott-Aldrich syndrome protein (WASp) is a key regulator of actin dynamics during cell motility and adhesion, and mutations in its gene are responsible for Wiskott-Aldrich syndrome (WAS). Here, we demonstrate that WASp is ubiquitylated following T-cell antigen receptor (TCR) activation. WASp phosphorylation at tyrosine 291 results in recruitment of the E3 ligase Cbl-b, which, together with c-Cbl, carries out WASp ubiquitylation. Lysine residues 76 and 81, located at the WASp WH1 domain, which contains the vast majority of WASp gene mutations, serve as the ubiquitylation sites. Disruption of WASp ubiquitylation causes WASp accumulation and alters actin dynamics and the formation of actin-dependent structures. Our data suggest that regulated degradation of activated WASp might be an efficient strategy by which the duration and localization of actin rearrangement and the intensity of T-cell activation are controlled.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Linfocitos T/inmunología , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Citoesqueleto de Actina/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adhesión Celular , Línea Celular , Movimiento Celular , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Células HEK293 , Humanos , Células Jurkat , Activación de Linfocitos/inmunología , Fosforilación , Proteínas Proto-Oncogénicas c-cbl/genética , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Ubiquitinación , Proteína del Síndrome de Wiskott-Aldrich/biosíntesis , Proteína del Síndrome de Wiskott-Aldrich/genética
13.
J Cell Sci ; 125(Pt 5): 1353-62, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22349705

RESUMEN

Centrioles are key structural elements of centrosomes and primary cilia. In mammals, only a few proteins including PLK4, CPAP (CENPJ), SAS6, CEP192, CEP152 and CEP135 have thus far been identified to be required for centriole duplication. STIL (SCL/TAL1 interrupting locus, also known as SIL) is a centrosomal protein that is essential for mouse and zebrafish embryonic development and mutated in primary microcephaly. Here, we show that STIL localizes to the pericentriolar material surrounding parental centrioles. Its overexpression results in excess centriole formation. siRNA-mediated depletion of STIL leads to loss of centrioles and abrogates PLK4-induced centriole overduplication. Additionally, we show that STIL is necessary for SAS6 recruitment to centrioles, suggesting that it is essential for daughter centriole formation, interacts with the centromere protein CPAP and rapidly shuttles between the cytoplasm and centrioles. Consistent with the requirement of centrioles for cilia formation, Stil(-/-) mouse embryonic fibroblasts lack primary cilia--a phenotype that can be reverted by restoration of STIL expression. These findings demonstrate that STIL is an essential component of the centriole replication machinery in mammalian cells.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , División Celular/fisiología , Línea Celular , Centriolos/genética , Centrosoma/fisiología , Citoplasma/fisiología , Células HEK293 , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño
14.
J Cell Sci ; 124(Pt 4): 532-9, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21245198

RESUMEN

Stil (Sil, SCL/TAL1 interrupting locus) is a cytosolic and centrosomal protein expressed in proliferating cells that is required for mouse and zebrafish neural development and is mutated in familial microcephaly. Recently the Drosophila melanogaster ortholog of Stil was found to be important for centriole duplication. Consistent with this finding, we report here that mouse embryonic fibroblasts lacking Stil are characterized by slow growth, low mitotic index and absence of clear centrosomes. We hypothesized that Stil regulates mitosis through the tumor suppressor Chfr, an E3 ligase that blocks mitotic entry in response to mitotic stress. Mouse fibroblasts lacking Stil by genomic or RNA interference approaches, as well as E9.5 Stil(-/-) embryos, express high levels of the Chfr protein and reduced levels of the Chfr substrate Plk1. Exogenous expression of Stil, knockdown of Chfr or overexpression of Plk1 reverse the abnormal mitotic phenotypes of fibroblasts lacking Stil. We further demonstrate that Stil increases Chfr auto-ubiquitination and reduces its protein stability. Thus, Stil is required for centrosome organization, entry into mitosis and cell proliferation, and these functions are at least partially mediated by Chfr and its targets. This is the first identification of a negative regulator of the Chfr mitotic checkpoint.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Centrosoma/metabolismo , Regulación hacia Abajo , Mitosis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Proteínas de Unión a Poli-ADP-Ribosa , Proteína 1 de la Leucemia Linfocítica T Aguda , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...