Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
Adv Biol (Weinh) ; : e2300131, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814378

RESUMEN

In May 2022, there is an International Regulatory and Pharmaceutical Industry (Innovation and Quality [IQ] Microphysiological Systems [MPS] Affiliate) Workshop on the standardization of complex in vitro models (CIVMs) in drug development. This manuscript summarizes the discussions and conclusions of this joint workshop organized and executed by the IQ MPS Affiliate and the United States Food and Drug Administration (FDA). A key objective of the workshop is to facilitate discussions around opportunities and/or needs for standardization of MPS and chart potential pathways to increase model utilization in the context of regulatory decision making. Participation in the workshop included 200 attendees from the FDA, IQ MPS Affiliate, and 26 global regulatory organizations and affiliated parties representing Europe, Japan, and Canada. It is agreed that understanding global perspectives regarding the readiness of CIVM/MPS models for regulatory decision making and potential pathways to gaining acceptance is useful to align on globally. The obstacles are currently too great to develop standards for every context of use (COU). Instead, it is suggested that a more tractable approach may be to think of broadly applicable standards that can be applied regardless of COU and/or organ system. Considerations and next steps for this effort are described.

3.
Front Pharmacol ; 14: 1142581, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063297

RESUMEN

Introduction: Microphysiological systems (MPS; organ-on-a-chip) aim to recapitulate the 3D organ microenvironment and improve clinical predictivity relative to previous approaches. Though MPS studies provide great promise to explore treatment options in a multifactorial manner, they are often very complex. It is therefore important to assess and manage technical confounding factors, to maximise power, efficiency and scalability. Methods: As an illustration of how MPS studies can benefit from a systematic evaluation of confounders, we developed an experimental design approach for a bone marrow (BM) MPS and tested it for a specified context of use, the assessment of lineage-specific toxicity. Results: We demonstrated the accuracy of our multicolour flow cytometry set-up to determine cell type and maturity, and the viability of a "repeated measures" design where we sample from chips repeatedly for increased scalability and robustness. Importantly, we demonstrated an optimal way to arrange technical confounders. Accounting for these confounders in a mixed-model analysis pipeline increased power, which meant that the expected lineage-specific toxicities following treatment with olaparib or carboplatin were detected earlier and at lower doses. Furthermore, we performed a sample size analysis to estimate the appropriate number of replicates required for different effect sizes. This experimental design-based approach will generalise to other MPS set-ups. Discussion: This design of experiments approach has established a groundwork for a reliable and reproducible in vitro analysis of BM toxicity in a MPS, and the lineage-specific toxicity data demonstrate the utility of this model for BM toxicity assessment. Toxicity data demonstrate the utility of this model for BM toxicity assessment.

4.
ALTEX ; 40(3): 485-518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36648096

RESUMEN

Disease models enable researchers to investigate, test, and identify therapeutic targets that would alter the patients' disease condition and improve quality of life. Advances in genetic alteration and analytical techniques have enabled rapid devel­opment of disease models using preclinical animals and cell cultures. However, success rates of drug development remain low due to limited recapitulation of clinical pathophysiology by these models. To resolve this challenge, the pharmaceutical industry has explored microphysiological system (MPS) disease models, which are complex in vitro systems that include but are not limited to organ-on-a-chip, organoids, spheroids, and 3D bioengineered tissues (e.g., 3D printing, hydrogels). Capable of integrating key in vivo properties, such as disease-relevant human cells, multi-cellularity/dimensionality of organs, and/or well-controlled physical and molecular cues, MPS disease models are being developed for a variety of indications. With on-going qualifications or validations for wide adoption within the pharmaceutical industry, MPS disease models hold exciting potential to enable in-depth investigation of in vivo pathophysiology and enhance drug discovery and development processes. To introduce the present status of MPS disease models, this paper describes notable examples in six disease areas: cancer, liver/kidney diseases, respiratory diseases/COVID-19, neurodegenerative diseases, gastrointestinal diseases, and select rare diseases. Additionally, we describe current technical limitations and provide recommendations for future development that would expand application opportunities within the pharmaceutical industry.


Asunto(s)
Productos Biológicos , COVID-19 , Animales , Humanos , Sistemas Microfisiológicos , Calidad de Vida , Hígado , Dispositivos Laboratorio en un Chip
5.
Nat Commun ; 13(1): 6021, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224199

RESUMEN

Drug-induced cytopenias are a prevalent and significant issue that worsens clinical outcomes and hinders the effective treatment of cancer. While reductions in blood cell numbers are classically associated with traditional cytotoxic chemotherapies, they also occur with newer targeted small molecules and the factors that determine the hematotoxicity profiles of oncologic drugs are not fully understood. Here, we explore why some Aurora kinase inhibitors cause preferential neutropenia. By studying drug responses of healthy human hematopoietic cells in vitro and analyzing existing gene expression datasets, we provide evidence that the enhanced vulnerability of neutrophil-lineage cells to Aurora kinase inhibition is caused by early developmental changes in ATP-binding cassette (ABC) transporter expression. These data show that hematopoietic cell-intrinsic expression of ABC transporters may be an important factor that determines how some Aurora kinase inhibitors affect the bone marrow.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Neutrófilos , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato , Aurora Quinasas/metabolismo , Hematopoyesis/genética , Humanos , Proteínas de Neoplasias/metabolismo , Neutrófilos/metabolismo , Inhibidores de Proteínas Quinasas/farmacología
6.
ALTEX ; 40(2): 314­336, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36044561

RESUMEN

Immune responses are heavily involved in the regulation and pathogenesis of human diseases, including infectious diseases, inflammatory and autoimmune conditions, cancer, neurological disorders, and cardiometabolic syndromes. The immune system is considered a double-edged sword serving as a powerful host defense mechanism against infection and cancerous cells and causing detrimental tissue damage when the immune response is exaggerated or uncontrollable. One of the challenges in studying the efficacy and toxicity of drugs that target or modulate the immune system is the lack of suitable preclinical human models that are predictive of human response. Recent advancements in human microphysiological systems (MPS) have provided a promising in vitro platform to evaluate the response of immune organs ex vivo, to investigate the interaction of immune cells with non-lymphoid tissue cells, and to reduce the reliance on animals in preclinical studies. The development, regulation, trafficking, and responses of immune cells have been extensively studied in preclinical animal models and clinically, providing a wealth of knowledge by which to evaluate new in vitro models. Therefore, the application of immunocompetent MPS in drug discovery and development should first verify that the immune response in an MPS model recapitulates the complexity of the human immune physiology. This manuscript reviews biological functions of immune organ systems and tissue-resident immune cells and discusses contexts-of-use for commonly used immunocompetent and immune organ MPS models. Current perspective and recommendations are provided to guide the continued development of immune organ and immunocompetent MPS models and their application in drug discovery and development.

7.
Biochem Soc Trans ; 50(2): 665-673, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35437569

RESUMEN

As an emerging hot topic of the last decade, Organ on Chip (OoC) is a new technology that is attracting interest from both basic and translational scientists. The Biochemical Society, with its mission of supporting the advancement of science, with addressing grand challenges that have societal impact, has included OoC into their agenda to review the current state of the art, bottlenecks and future directions. This conference brought together representatives of the main stakeholders in the OoC field including academics, end-users, regulators and technology developers to discuss and identify requirements for this new technology to deliver on par with the expectations and the key challenges and gaps that still need to be addressed to achieve robust human-relevant tools, able to positively impact decision making in the pharmaceutical industry and reduce overreliance on poorly predictive animal models.


Asunto(s)
Dispositivos Laboratorio en un Chip , Tecnología , Animales , Modelos Animales , Análisis de Secuencia por Matrices de Oligonucleótidos
8.
Sci Rep ; 11(1): 21959, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34754012

RESUMEN

Micronucleus (MN) assessment is a valuable tool in safety assessment. However, several compounds are positive in the in vivo bone marrow (BM) MN assay but negative in vitro, reflecting that BM complexity is not recapitulated in vitro. Importantly, these compounds are not genotoxic; rather, drug-driven pharmacological-effects on the BM increase MN, however, without mechanistic understanding, in vivo positives stop drug-progression. Thus, physiologically-relevant BM models are required to bridge the gap between in vitro and in vivo. The current study aimed to investigate the utility of two human 3D BM models (fluidic and static) for MN assessment. MN induction following treatment with etoposide and Poly-ADP Ribose Polymerase inhibitor (PARPi) and prednisolone (negative in vitro, positive in vivo) was determined in 2D L5178Y and human BM cells, and the 3D BM models. Etoposide (0-0.070 µM) and PARPi (0-150 µM) induced MN in both 3D BM models indicating their utility for genotoxicity testing. Interestingly, PARPi treatment induced a MN trend in 3D more comparable to in vivo. Importantly, prednisolone (0-1.7 mM) induced MN in both 3D BM models, suggesting recapitulation of the in vivo microenvironment. These models could provide a valuable tool to follow up, and eventually predict, suspected pharmacological mechanisms, thereby reducing animal studies.


Asunto(s)
Médula Ósea/efectos de los fármacos , Pruebas de Micronúcleos/métodos , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Etopósido/toxicidad , Humanos , Ratones , Modelos Biológicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/toxicidad , Prednisolona/toxicidad
9.
Front Med (Lausanne) ; 8: 728866, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589503

RESUMEN

The first concepts for reproducing human systemic organismal biology in vitro were developed over 12 years ago. Such concepts, then called human- or body-on-a-chip, claimed that microphysiological systems would become the relevant technology platform emulating the physiology and morphology of human organisms at the smallest biologically acceptable scale in vitro and, therefore, would enable the selection of personalized therapies for any patient at unprecedented precision. Meanwhile, the first human organoids-stem cell-derived complex three-dimensional organ models that expand and self-organize in vitro-have proven that in vitro self-assembly of minute premature human organ-like structures is feasible, once the respective stimuli of ontogenesis are provided to human stem cells. Such premature organoids can precisely reflect a number of distinct physiological and pathophysiological features of their respective counterparts in the human body. We now develop the human-on-a-chip concepts of the past into an organismoid theory. We describe the current concept and principles to create a series of organismoids-minute, mindless and emotion-free physiological in vitro equivalents of an individual's mature human body-by an artificially short process of morphogenetic self-assembly mimicking an individual's ontogenesis from egg cell to sexually mature organism. Subsequently, we provide the concept and principles to maintain such an individual's set of organismoids at a self-sustained functional healthy homeostasis over very long time frames in vitro. Principles how to perturb a subset of healthy organismoids by means of the natural or artificial induction of diseases are enrolled to emulate an individual's disease process. Finally, we discuss using such series of healthy and perturbed organismoids in predictively selecting, scheduling and dosing an individual patient's personalized therapy or medicine precisely. The potential impact of the organismoid theory on our healthcare system generally and the rapid adoption of disruptive personalized T-cell therapies particularly is highlighted.

10.
Front Endocrinol (Lausanne) ; 11: 571357, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101204

RESUMEN

Background: Small noncoding microRNA (miRNA) have regulatory functions in polycystic ovary syndrome (PCOS) that differ to those in women without PCOS. However, little is known about miRNA expression in women with PCOS who are not insulin resistant (IR). Methods: Circulating miRNAs were measured using quantitative polymerase chain reaction (qPCR) in 24 non-obese BMI and age matched women with PCOS and 24 control women. A miRNA data set was used to determine miRNA levels. Results: Women with PCOS showed a higher free androgen index (FAI) and anti-mullerian hormone (AMH) but IR did not differ. Four miRNAs (miR-1260a, miR-18b-5p, miR-424-5p, and miR let-7b-3p) differed between control and PCOS women that passed the false discovery rate (FDR) out of a total of 177 circulating miRNAs that were detected. MiRNA let-7b-3p correlated with AMH in PCOS (p < 0.05). When the groups were combined, miR-1260a correlated with FAI and let-7b-3p correlated with body mass index (BMI) (p < 0.05). There was no correlation to androgen levels. Ingenuity pathway analysis showed that nine of the top 10 miRNAs reported were associated with inflammatory pathways. Conclusion: When IR did not differ between PCOS and control women, only four miRNA differed significantly suggesting that IR may be a driver for many of the miRNA changes reported. Let-7b-3p was related to AMH in PCOS, and to BMI as a group, whilst miR-1260a correlated with FAI. Androgen levels, however, had no effect upon circulating miRNA profiles. The expressed miRNAs were associated with the inflammatory pathway involving TNF and IL6.


Asunto(s)
MicroARN Circulante/sangre , MicroARN Circulante/genética , Resistencia a la Insulina , Síndrome del Ovario Poliquístico/sangre , Síndrome del Ovario Poliquístico/genética , Adulto , Hormona Antimülleriana/sangre , Biomarcadores/sangre , Estudios de Cohortes , Femenino , Redes Reguladoras de Genes/fisiología , Humanos , Proyectos Piloto , Síndrome del Ovario Poliquístico/diagnóstico , Estudios Prospectivos , Adulto Joven
12.
Artículo en Inglés | MEDLINE | ID: mdl-32411089

RESUMEN

Background: Despite several authors who have hypothesized that alterations of small noncoding RNAs (miR) are implicated in the etiopathogenesis of polycystic ovarian syndrome (PCOS), contrasting findings have been reported so far. Discrepancies in body mass index (BMI) levels may account for these differences; therefore, the aim of the present study was to determine whether miR differed in serum samples collected from age- and BMI-matched control and PCOS women. Methods: In a cross-sectional study, miR were measured using quantitative polymerase chain reaction in 29 women with anovulatory PCOS women and 29 control women who were in the follicular phase of their menstrual cycle, from the local biobank. Results: One hundred seventy-six miR were detected, of which 15 miR passed the false discovery rate (FDR; p < 0.05) that differed between PCOS and control women. There was no association of the top 9 miR (p < 0.02) (miR-486-5p, miR-24-3p, miR-19b-3p, miR-22-3p, miR-19a-3p, miR-339-5p, miR-185-5p, miR-101-3p, miR-let-7i-5p) with BMI, androgen levels, insulin resistance, or antimullerian hormone (AMH) in either PCOS or normal women. Ingenuity pathway assessment showed the pathways were interrelated for abnormalities of the reproductive system. Conclusion: When the confounding influence of weight was accounted for, miR levels differed between anovulatory PCOS women and control women in the follicular phase of the menstrual cycle. Interestingly, the differing miR were associated with the pathways of reproductive abnormalities but did not associate with AMH or metabolic parameters.


Asunto(s)
Biomarcadores/análisis , Índice de Masa Corporal , MicroARNs/genética , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/patología , Adolescente , Adulto , Peso Corporal , Estudios de Casos y Controles , Estudios Transversales , Femenino , Estudios de Seguimiento , Humanos , Resistencia a la Insulina , Persona de Mediana Edad , Pronóstico , Adulto Joven
13.
ALTEX ; 37(3): 365-394, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32113184

RESUMEN

The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.


Asunto(s)
Alternativas a las Pruebas en Animales , Bienestar del Animal , Desarrollo de Medicamentos , Evaluación Preclínica de Medicamentos/métodos , Dispositivos Laboratorio en un Chip , Animales , Industria Farmacéutica , Humanos , Modelos Biológicos
15.
Mutagenesis ; 35(2): 153-159, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32087008

RESUMEN

Toxicogenomics, the application of genomics to toxicology, was described as 'a new era' for toxicology. Standard toxicity tests typically involve a number of short-term bioassays that are costly, time consuming, require large numbers of animals and generally focus on a single end point. Toxicogenomics was heralded as a way to improve the efficiency of toxicity testing by assessing gene regulation across the genome, allowing rapid classification of compounds based on characteristic expression profiles. Gene expression microarrays could measure and characterise genome-wide gene expression changes in a single study and while transcriptomic profiles that can discriminate between genotoxic and non-genotoxic carcinogens have been identified, challenges with the approach limited its application. As such, toxicogenomics did not transform the field of genetic toxicology in the way it was predicted. More recently, next generation sequencing (NGS) technologies have revolutionised genomics owing to the fact that hundreds of billions of base pairs can be sequenced simultaneously cheaper and quicker than traditional Sanger methods. In relation to genetic toxicology, and thousands of cancer genomes have been sequenced with single-base substitution mutational signatures identified, and mutation signatures have been identified following treatment of cells with known or suspected environmental carcinogens. RNAseq has been applied to detect transcriptional changes following treatment with genotoxins; modified RNAseq protocols have been developed to identify adducts in the genome and Duplex sequencing is an example of a technique that has recently been developed to accurately detect mutation. Machine learning, including MutationSeq and SomaticSeq, has also been applied to somatic mutation detection and improvements in automation and/or the application of machine learning algorithms may allow high-throughput mutation sequencing in the future. This review will discuss the initial promise of transcriptomics for genetic toxicology, and how the development of NGS technologies and new machine learning algorithms may finally realise that promise.


Asunto(s)
Genómica/tendencias , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Toxicogenética/tendencias , Toxicología/tendencias , Algoritmos , Regulación de la Expresión Génica/genética , Humanos , Aprendizaje Automático , Mutágenos/metabolismo , Mutación
16.
Nat Biomed Eng ; 4(4): 394-406, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31988457

RESUMEN

The inaccessibility of living bone marrow (BM) hampers the study of its pathophysiology under myelotoxic stress induced by drugs, radiation or genetic mutations. Here, we show that a vascularized human BM-on-a-chip (BM chip) supports the differentiation and maturation of multiple blood cell lineages over 4 weeks while improving CD34+ cell maintenance, and that it recapitulates aspects of BM injury, including myeloerythroid toxicity after clinically relevant exposures to chemotherapeutic drugs and ionizing radiation, as well as BM recovery after drug-induced myelosuppression. The chip comprises a fluidic channel filled with a fibrin gel in which CD34+ cells and BM-derived stromal cells are co-cultured, a parallel channel lined by human vascular endothelium and perfused with culture medium, and a porous membrane separating the two channels. We also show that BM chips containing cells from patients with the rare genetic disorder Shwachman-Diamond syndrome reproduced key haematopoietic defects and led to the discovery of a neutrophil maturation abnormality. As an in vitro model of haematopoietic dysfunction, the BM chip may serve as a human-specific alternative to animal testing for the study of BM pathophysiology.


Asunto(s)
Células de la Médula Ósea/citología , Médula Ósea/patología , Hematopoyesis , Microfluídica/métodos , Animales , Antígenos CD34 , Médula Ósea/efectos de los fármacos , Médula Ósea/efectos de la radiación , Trasplante de Médula Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Humanos , Dispositivos Laboratorio en un Chip , Células Madre Mesenquimatosas , Microfluídica/instrumentación
17.
Arch Toxicol ; 93(10): 3005-3020, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31515600

RESUMEN

Breast cancer is the most commonly diagnosed malignancy in females, the etiology being multifactorial and includes the role of lifestyle exposure to DNA-damaging chemicals such as dietary carcinogens benzo (a) pyrene (BaP) and 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine (PhIP). Both compounds require cytochrome P450 (CYP)-mediated metabolic activation to DNA-damaging species, and both induce transcriptional responses through the nuclear receptors Aryl hydrocarbon receptor (AhR) and estrogen receptor α (ERα). BaP and PhIP are mammary carcinogens in rodents. Clinically, circulating IL-6 expression is linked with poor prognosis of cancer and 35% of the deaths in breast cancer are linked with inflammation. The objective of this work was to investigate the molecular toxicology and local activation of BaP and PhIP in the presence of IL-6. Our laboratory has previously reported that miR27b can regulate CYP1B1 expression in colorectal cells, here we have investigated if this mechanism is working in mammary cell models, MCF-7 and MDA-MB-231 cells. Treatment (24 h) of cells with BaP (10 nM-10 µM) and PhIP (100 nM-100 µM) significantly induced genetic damage (micronuclei formation) in a dose-dependent manner in both cell lines. This effect was potentiated in the presence of human IL-6 at concentrations reported to be expressed in clinical breast cancer. On its own, IL-6 treatment failed to induce micronuclei frequency above the control levels in these cells. Compared to BaP or PhIP treatment alone, IL-6 plus BaP or PhIP selectively induced CYP1B1 significantly in both cell lines. Additionally, miR27b expression was downregulated by IL-6 treatments and transfection with miR27b inhibitor confirmed that miR27b is a regulator of CYP1B1 in both cell lines. These data show that BaP- and PhIP-induced DNA damage in mammary cells is potentiated by the inflammatory cytokine IL-6 and that inflammation-induced CYP expression, specifically CYP1B1 via miR27b, is responsible for this effect.


Asunto(s)
Benzo(a)pireno/toxicidad , Neoplasias de la Mama/patología , Carcinógenos/toxicidad , Imidazoles/toxicidad , Interleucina-6/metabolismo , Benzo(a)pireno/administración & dosificación , Neoplasias de la Mama/genética , Carcinógenos/administración & dosificación , Línea Celular Tumoral , Citocromo P-450 CYP1B1/genética , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Imidazoles/administración & dosificación , Inflamación/complicaciones , Interleucina-6/administración & dosificación , Células MCF-7 , MicroARNs/genética
18.
Arch Toxicol ; 92(12): 3459-3469, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30259071

RESUMEN

Cooking food at high temperatures produces genotoxic chemicals and there is concern about their impact on human health. DNA damage caused by individual chemicals has been investigated but few studies have examined the consequences of exposure to mixtures as found in food. The current study examined the mutagenic response to binary mixtures of benzo[a]pyrene (BaP) with glycidamide (GA), BaP with acrylamide (AC), or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) with GA at human-relevant concentrations (sub-nM). The metabolically competent human MCL-5 cells were exposed to these chemicals individually or in mixtures and mutagenicity was assessed at the thymidine kinase (TK) locus. Mixture exposures gave dose-responses that differed from those for the individual chemicals; for the BaP-containing mixtures, an increased mutation frequency (MF) at low concentration combinations that were not mutagenic individually, and decreased MF at higher concentration combinations, compared to the calculated predicted additive MF of the individual chemicals. In contrast, the mixture of PhIP with GA did not increase MF above background levels. These data suggest BaP is driving the mutation response and that metabolic activation plays a role; in mixtures with BaP the increased/decreased MF above/below the expected additive MF the order is PhIP > AC > GA. The increase in MF at some low concentration combinations that include BaP is interesting and supports our previous work showing a similar response for BaP with PhIP, confirming this response is not limited to the BaP/PhIP combination. Moreover, the lack of a mutation response for PhIP with GA relative to the response of the individual chemicals at equivalent doses is interesting and may represent a potential avenue for reducing the risk of exposure to environmental carcinogens; specifically, removal of BaP from the mixture may reduce the mutation effect, although in the context of food this would be significantly challenging.


Asunto(s)
Acrilamida/toxicidad , Benzo(a)pireno/toxicidad , Compuestos Epoxi/toxicidad , Imidazoles/toxicidad , Acrilamida/administración & dosificación , Benzo(a)pireno/administración & dosificación , Carcinógenos/administración & dosificación , Carcinógenos/toxicidad , Carcinógenos Ambientales/administración & dosificación , Carcinógenos Ambientales/toxicidad , Línea Celular , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Compuestos Epoxi/administración & dosificación , Alimentos/toxicidad , Humanos , Imidazoles/administración & dosificación , Mutagénesis/efectos de los fármacos , Pruebas de Mutagenicidad , Mutágenos/administración & dosificación , Mutágenos/toxicidad , Mutación/efectos de los fármacos
19.
Arch Toxicol ; 92(10): 3223-3239, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30155724

RESUMEN

Benzo[a]pyrene (B(a)P) is a major cancer-causing contaminant present in food such as cooked meats and cereals, and is ubiquitous in the environment in smoke derived from the combustion of organic material. Exposure to B(a)P is epidemiologically linked with the incidence of breast cancer. Although B(a)P is recognized as a complete genotoxic carcinogen, thought to act primarily via CYP-mediated metabolic activation to DNA-damaging species, there is also evidence that B(a)P exposure elicits other biological responses that promote development of the cancer phenotype. Here in mechanistic studies using human mammary cells MCF-7 and MDA-MB-231, we have explored mechanisms whereby B(a)P (10- 8 to 10- 5M) promotes inflammation pathways via TNF-α and NFκB leading to IL-6 upregulation, microRNA (Let7a, miR21 and miR29b) dysregulation and activation of VEGF. The miRNA dysregulation is associated with altered expression of inflammation mediators and increased migration and invasive potential of human mammary cancer cells. Our data suggest that mammary cell exposure to B(a)P results in perturbation of inflammation mediators and dysregulation of tumorigenic miRNAs, leading to an inflammation microenvironment that facilitates migration and invasion of mammary epithelial cells. These properties of B(a)P, together with its well-established metabolic activation to DNA-damaging species, offer mechanistic insights into its carcinogenic mode of action.


Asunto(s)
Benzo(a)pireno/toxicidad , Neoplasias de la Mama/patología , Inflamación/inducido químicamente , Microambiente Tumoral/efectos de los fármacos , Neoplasias de la Mama/inducido químicamente , Carcinógenos/toxicidad , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/patología , Interleucina-6/genética , Interleucina-6/metabolismo , Células MCF-7 , MicroARNs/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
20.
Arch Toxicol ; 92(4): 1639-1655, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29362861

RESUMEN

Consumption of cooked/processed meat and ethanol are lifestyle risk factors in the aetiology of breast cancer. Cooking meat generates heterocyclic amines such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Epidemiology, mechanistic and animal studies indicate that PhIP is a mammary carcinogen that could be causally linked to breast cancer incidence; PhIP is DNA damaging, mutagenic and oestrogenic. PhIP toxicity involves cytochrome P450 (CYP1 family)-mediated metabolic activation to DNA-damaging species, and transcriptional responses through Aryl hydrocarbon receptor (AhR) and estrogen-receptor-α (ER-α). Ethanol consumption is a modifiable lifestyle factor strongly associated with breast cancer risk. Ethanol toxicity involves alcohol dehydrogenase metabolism to reactive acetaldehyde, and is also a substrate for CYP2E1, which when uncoupled generates reactive oxygen species (ROS) and DNA damage. Here, using human mammary cells that differ in estrogen-receptor status, we explore genotoxicity of PhIP and ethanol and mechanisms behind this toxicity. Treatment with PhIP (10-7-10-4 M) significantly induced genotoxicity (micronuclei formation) preferentially in ER-α positive human mammary cell lines (MCF-7, ER-α+) compared to MDA-MB-231 (ER-α-) cells. PhIP-induced CYP1A2 in both cell lines but CYP1B1 was selectively induced in ER-α(+) cells. ER-α inhibition in MCF-7 cells attenuated PhIP-mediated micronuclei formation and CYP1B1 induction. PhIP-induced CYP2E1 and ROS via ER-α-STAT-3 pathway, but only in ER-α (+) MCF-7 cells. Importantly, simultaneous treatments of physiological concentrations ethanol (10-3-10-1 M) with PhIP (10-7-10-4 M) increased oxidative stress and genotoxicity in MCF-7 cells, compared to the individual chemicals. Collectively, these data offer a mechanistic basis for the increased risk of breast cancer associated with dietary cooked meat and ethanol lifestyle choices.


Asunto(s)
Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/genética , Carcinógenos/toxicidad , Daño del ADN , Etanol/toxicidad , Imidazoles/toxicidad , Carne Roja/efectos adversos , Citocromo P-450 CYP1B1/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Estilo de Vida , Células MCF-7 , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...