Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22273257

RESUMEN

PurposeIn young adults (18 to 49 years old), investigation of the acute respiratory distress syndrome (ARDS) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been limited. We evaluated the risk factors and outcomes of ARDS following infection with SARS-CoV-2 in a young adult population. MethodsA retrospective cohort study was conducted between January 1st, 2020 and February 28th, 2021 using patient-level electronic health records (EHR), across 241 United States hospitals and 43 European hospitals participating in the Consortium for Clinical Characterization of COVID-19 by EHR (4CE). To identify the risk factors associated with ARDS, we compared young patients with and without ARDS through a federated analysis. We further compared the outcomes between young and old patients with ARDS. ResultsAmong the 75,377 hospitalized patients with positive SARS-CoV-2 PCR, 1001 young adults presented with ARDS ( 7.8% of young hospitalized adults). Their mortality rate at 90 days was 16.2% and they presented with a similar complication rate for infection than older adults with ARDS. Peptic ulcer disease, paralysis, obesity, congestive heart failure, valvular disease, diabetes, chronic pulmonary disease and liver disease were associated with a higher risk of ARDS. We described a high prevalence of obesity (53%), hypertension (38%-although not significantly associated with ARDS), and diabetes (32%). ConclusionTrough an innovative method, a large international cohort study of young adults developing ARDS after SARS-CoV-2 infection has been gather. It demonstrated the poor outcomes of this population and associated risk factor.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22270410

RESUMEN

ObjectiveFor multi-center heterogeneous Real-World Data (RWD) with time-to-event outcomes and high-dimensional features, we propose the SurvMaximin algorithm to estimate Cox model feature coefficients for a target population by borrowing summary information from a set of health care centers without sharing patient-level information. Materials and MethodsFor each of the centers from which we want to borrow information to improve the prediction performance for the target population, a penalized Cox model is fitted to estimate feature coefficients for the center. Using estimated feature coefficients and the covariance matrix of the target population, we then obtain a SurvMaximin estimated set of feature coefficients for the target population. The target population can be an entire cohort comprised of all centers, corresponding to federated learning, or can be a single center, corresponding to transfer learning. ResultsSimulation studies and a real-world international electronic health records application study, with 15 participating health care centers across three countries (France, Germany, and the U.S.), show that the proposed SurvMaximin algorithm achieves comparable or higher accuracy compared with the estimator using only the information of the target site and other existing methods. The SurvMaximin estimator is robust to variations in sample sizes and estimated feature coefficients between centers, which amounts to significantly improved estimates for target sites with fewer observations. ConclusionsThe SurvMaximin method is well suited for both federated and transfer learning in the high-dimensional survival analysis setting. SurvMaximin only requires a one-time summary information exchange from participating centers. Estimated regression vectors can be very heterogeneous. SurvMaximin provides robust Cox feature coefficient estimates without outcome information in the target population and is privacy-preserving.

3.
Griffin M Weber; Chuan Hong; Nathan P Palmer; Paul Avillach; Shawn N Murphy; Alba Gutiérrez-Sacristán; Zongqi Xia; Arnaud Serret-Larmande; Antoine Neuraz; Gilbert S. Omenn; Shyam Visweswaran; Jeffrey G Klann; Andrew M South; Ne Hooi Will Loh; Mario Cannataro; Brett K Beaulieu-Jones; Riccardo Bellazzi; Giuseppe Agapito; Mario Alessiani; Bruce J Aronow; Douglas S Bell; Antonio Bellasi; Vincent Benoit; Michele Beraghi; Martin Boeker; John Booth; Silvano Bosari; Florence T Bourgeois; Nicholas W Brown; Mauro Bucalo; Luca Chiovato; Lorenzo Chiudinelli; Arianna Dagliati; Batsal Devkota; Scott L DuVall; Robert W Follett; Thomas Ganslandt; Noelia García Barrio; Tobias Gradinger; Romain Griffier; David A Hanauer; John H Holmes; Petar Horki; Kenneth M Huling; Richard W Issitt; Vianney Jouhet; Mark S Keller; Detlef Kraska; Molei Liu; Yuan Luo; Kristine E Lynch; Alberto Malovini; Kenneth D Mandl; Chengsheng Mao; Anupama Maram; Michael E Matheny; Thomas Maulhardt; Maria Mazzitelli; Marianna Milano; Jason H Moore; Jeffrey S Morris; Michele Morris; Danielle L Mowery; Thomas P Naughton; Kee Yuan Ngiam; James B Norman; Lav P Patel; Miguel Pedrera Jimenez; Rachel B Ramoni; Emily R Schriver; Luigia Scudeller; Neil J Sebire; Pablo Serrano Balazote; Anastasia Spiridou; Amelia LM Tan; Byorn W.L. Tan; Valentina Tibollo; Carlo Torti; Enrico M Trecarichi; Michele Vitacca; Alberto Zambelli; Chiara Zucco; - The Consortium for Clinical Characterization of COVID-19 by EHR (4CE); Isaac S Kohane; Tianxi Cai; Gabriel A Brat.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20247684

RESUMEN

ObjectivesTo perform an international comparison of the trajectory of laboratory values among hospitalized patients with COVID-19 who develop severe disease and identify optimal timing of laboratory value collection to predict severity across hospitals and regions. DesignRetrospective cohort study. SettingThe Consortium for Clinical Characterization of COVID-19 by EHR (4CE), an international multi-site data-sharing collaborative of 342 hospitals in the US and in Europe. ParticipantsPatients hospitalized with COVID-19, admitted before or after PCR-confirmed result for SARS-CoV-2. Primary and secondary outcome measuresPatients were categorized as "ever-severe" or "never-severe" using the validated 4CE severity criteria. Eighteen laboratory tests associated with poor COVID-19-related outcomes were evaluated for predictive accuracy by area under the curve (AUC), compared between the severity categories. Subgroup analysis was performed to validate a subset of laboratory values as predictive of severity against a published algorithm. A subset of laboratory values (CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin) was compared between North American and European sites for severity prediction. ResultsOf 36,447 patients with COVID-19, 19,953 (43.7%) were categorized as ever-severe. Most patients (78.7%) were 50 years of age or older and male (60.5%). Longitudinal trajectories of CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin showed association with disease severity. Significant differences of laboratory values at admission were found between the two groups. With the exception of D-dimer, predictive discrimination of laboratory values did not improve after admission. Sub-group analysis using age, D-dimer, CRP, and lymphocyte count as predictive of severity at admission showed similar discrimination to a published algorithm (AUC=0.88 and 0.91, respectively). Both models deteriorated in predictive accuracy as the disease progressed. On average, no difference in severity prediction was found between North American and European sites. ConclusionsLaboratory test values at admission can be used to predict severity in patients with COVID-19. Prediction models show consistency across international sites highlighting the potential generalizability of these models.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20201855

RESUMEN

AO_SCPLOWBSTRACTC_SCPLOWO_ST_ABSIntroductionC_ST_ABSThe Consortium for Clinical Characterization of COVID-19 by EHR (4CE) includes hundreds of hospitals internationally using a federated computational approach to COVID-19 research using the EHR. ObjectiveWe sought to develop and validate a standard definition of COVID-19 severity from readily accessible EHR data across the Consortium. MethodsWe developed an EHR-based severity algorithm and validated it on patient hospitalization data from 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also used a machine learning approach to compare selected predictors of severity to the 4CE algorithm at one site. ResultsThe 4CE severity algorithm performed with pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of single code categories for acuity were unacceptably inaccurate - varying by up to 0.65 across sites. A multivariate machine learning approach identified codes resulting in mean AUC 0.956 (95% CI: 0.952, 0.959) compared to 0.903 (95% CI: 0.886, 0.921) using expert-derived codes. Billing codes were poor proxies of ICU admission, with 49% precision and recall compared against chart review at one partner institution. DiscussionWe developed a proxy measure of severity that proved resilient to coding variability internationally by using a set of 6 code classes. In contrast, machine-learning approaches may tend to overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold standard outcomes, possibly due to pandemic conditions. ConclusionWe developed an EHR-based algorithm for COVID-19 severity and validated it at 12 international sites.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20117358

RESUMEN

BackgroundSevere COVID-19 can manifest in rapid decompensation and respiratory failure with elevated inflammatory markers. This presentation is consistent with cytokine release syndrome in chimeric antigen receptor T cell therapy, for which IL-6 blockade is approved treatment. MethodsWe assessed effectiveness and safety of IL-6 blockade with tocilizumab in a single-center cohort of patients with COVID-19 requiring mechanical ventilation. The primary endpoint was survival probability post-intubation; secondary analyses included an ordinal illness severity scale integrating superinfections. Outcomes in patients who received tocilizumab compared to tocilizumab-untreated controls were evaluated using multivariable Cox regression with propensity score inverse probability weighting (IPTW). Findings154 patients were included, of whom 78 received tocilizumab and 76 did not. Median follow-up was 47 days (range 28-67). Baseline characteristics were similar between groups, although tocilizumab-treated patients were younger (mean 55 vs. 60 years), less likely to have chronic pulmonary disease (10% vs. 28%), and had lower D-dimer values at time of intubation (median 2.4 vs. 6.5 mg/dL). In IPTW-adjusted models, tocilizumab was associated with a 45% reduction in hazard of death [hazard ratio 0.55 (95% CI 0.33, 0.90)] and improved status on the ordinal outcome scale [odds ratio per 1-level increase: 0.59 (0.36, 0.95)]. Though tocilizumab was associated with an increased proportion of patients with superinfections (54% vs. 26%; p<0.001), there was no difference in 28-day case fatality rate among tocilizumab-treated patients with versus without superinfection [22% vs. 15%; p=0.42]. InterpretationIn this cohort of mechanically ventilated COVID-19 patients, tocilizumab was associated with a decreased likelihood of death despite higher superinfection occurrence. Randomized controlled trials are urgently needed to confirm these findings. KEY POINTSO_ST_ABSQuestionC_ST_ABSCan therapy with the IL-6 receptor antagonist tocilizumab improve outcomes in patients with severe COVID-19 illness requiring mechanical ventilation? FindingsIn this observational, controlled study of 154 patients, receipt of tocilizumab was associated with a 45% reduction in the hazard of death, despite twice the frequency of superinfection (54% vs 26%), both of which were statistically significant findings. MeaningTocilizumab therapy may improve survival in patients with COVID-19 illness requiring mechanical ventilation. These results can inform clinical practice pending the results of randomized clinical trials.

6.
Gabriel A Brat; Griffin M Weber; Nils Gehlenborg; Paul Avillach; Nathan P Palmer; Luca Chiovato; James Cimino; Lemuel R Waitman; Gilbert S Omenn; Alberto Malovini; Jason H Moore; Brett K Beaulieu-Jones; Valentina Tibollo; Shawn N Murphy; Sehi L'Yi; Mark S Keller; Riccardo Bellazzi; David A Hanauer; Arnaud Serret-Larmande; Alba Gutierrez-Sacristan; John H Holmes; Douglas S Bell; Kenneth D Mandl; Robert W Follett; Jeffrey G Klann; Douglas A Murad; Luigia Scudeller; Mauro Bucalo; Katie Kirchoff; Jean Craig; Jihad Obeid; Vianney Jouhet; Romain Griffier; Sebastien Cossin; Bertrand Moal; Lav P Patel; Antonio Bellasi; Hans U Prokosch; Detlef Kraska; Piotr Sliz; Amelia LM Tan; Kee Yuan Ngiam; Alberto Zambelli; Danielle L Mowery; Emily Schiver; Batsal Devkota; Robert L Bradford; Mohamad Daniar; - APHP/Universities/INSERM COVID-19 research collaboration; Christel Daniel; Vincent Benoit; Romain Bey; Nicolas Paris; Anne Sophie Jannot; Patricia Serre; Nina Orlova; Julien Dubiel; Martin Hilka; Anne Sophie Jannot; Stephane Breant; Judith Leblanc; Nicolas Griffon; Anita Burgun; Melodie Bernaux; Arnaud Sandrin; Elisa Salamanca; Thomas Ganslandt; Tobias Gradinger; Julien Champ; Martin Boeker; Patricia Martel; Alexandre Gramfort; Olivier Grisel; Damien Leprovost; Thomas Moreau; Gael Varoquaux; Jill-Jenn Vie; Demian Wassermann; Arthur Mensch; Charlotte Caucheteux; Christian Haverkamp; Guillaume Lemaitre; Ian D Krantz; Sylvie Cormont; Andrew South; - The Consortium for Clinical Characterization of COVID-19 by EHR (4CE); Tianxi Cai; Isaac S Kohane.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20059691

RESUMEN

We leveraged the largely untapped resource of electronic health record data to address critical clinical and epidemiological questions about Coronavirus Disease 2019 (COVID-19). To do this, we formed an international consortium (4CE) of 96 hospitals across 5 countries (www.covidclinical.net). Contributors utilized the Informatics for Integrating Biology and the Bedside (i2b2) or Observational Medical Outcomes Partnership (OMOP) platforms to map to a common data model. The group focused on comorbidities and temporal changes in key laboratory test values. Harmonized data were analyzed locally and converted to a shared aggregate form for rapid analysis and visualization of regional differences and global commonalities. Data covered 27,584 COVID-19 cases with 187,802 laboratory tests. Case counts and laboratory trajectories were concordant with existing literature. Laboratory tests at the time of diagnosis showed hospital-level differences equivalent to country-level variation across the consortium partners. Despite the limitations of decentralized data generation, we established a framework to capture the trajectory of COVID-19 disease in patients and their response to interventions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...