Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20105460

RESUMEN

ObjectivesTo understand SARS-Co-V-2 infection and transmission in UK nursing homes in order to develop preventive strategies for protecting the frail elderly residents. DesignAn outbreak investigation. Setting4 nursing homes affected by COVID-19 outbreaks in central London. Participants394 residents and 70 staff in nursing homes. InterventionsTwo point-prevalence surveys one week apart where residents underwent SARS-CoV-2 testing and had relevant symptoms documented. Asymptomatic staff from three of the four homes were also offered SARS-CoV-2 testing. Main outcome measuresAll-cause mortality, and mortality attributed to COVID-19 on death certificates. Prevalence of SARS-CoV-2 infection and symptoms in residents and staff. ResultsOverall, 26% (95% confidence interval 22 to 31) of residents died over the two-month period. All-cause mortality increased by 203% (95% CI 70 to 336). Systematic testing identified 40% (95% CI 35 to 46) of residents, of whom 43% (95% CI 34 to 52) were asymptomatic and 18% (95% CI 11 to 24) had atypical symptoms, as well as 4% (95% CI -1 to 9) of asymptomatic staff who tested positive for SARS-CoV-2. ConclusionsThe SARS-CoV-2 outbreak was associated with a very high mortality rate in residents of nursing homes. Systematic testing of all residents and a representative sample of staff identified high rates of SARS-CoV-2 positivity across the four nursing homes, highlighting a potential for regular screening to prevent future outbreaks.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20088344

RESUMEN

The SARS-CoV-2 pandemic has shown how the rapid rise in demand for patient and community sample testing, required for tracing and containing a highly infectious disease, has quickly overwhelmed testing capability globally. With most diagnostic infrastructure dependent on specialised instruments, their exclusive reagent supplies quickly become bottlenecks in times of peak demand, creating an urgent need for novel approaches to boost testing capacity. We address this challenge by refocusing the full synthetic biology stack available at the London Biofoundry onto the development of alternative patient sample testing pipelines. We present a reagent-agnostic automated SARS-CoV-2 testing platform that can be quickly deployed and scaled, and that accepts a diverse range of reagents. Using an in-house-generated, open-source, MS2-virus-like-particle-SARS-CoV-2 standard, we validate RNA extraction and RT-qPCR workflows as well as two novel detection assays based on CRISPR-Cas and Loop-mediated isothermal Amplification (LAMP) approaches. In collaboration with an NHS diagnostic testing lab, we report the performance of the overall workflow and benchmark SARS-CoV-2 detection in patient samples via RT-qPCR, CRISPR-Cas, and LAMP against clinical test sets. The validated RNA extraction and RT-qPCR platform has been installed in NHS diagnostic labs with a testing capacity of 1000 samples per day and now contributes to increased patient sample processing in the UK while we continue to refine and develop novel high-throughput diagnostic methods. Finally, our workflows and protocols can be quickly implemented and adapted by members of the Global Biofoundry Alliance and the wider scientific and medical diagnostics community.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA