Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bio Protoc ; 13(9): e4666, 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37188109

RESUMEN

Management of neuropathic pain is notoriously difficult; current analgesics, including anti-inflammatory- and opioid-based medications, are generally ineffective and can pose serious side effects. There is a need to uncover non-addictive and safe analgesics to combat neuropathic pain. Here, we describe the setup of a phenotypic screen whereby the expression of an algesic gene,Gch1, is targeted. GCH1 is the rate-limiting enzyme in the de novo synthesis of tetrahydrobiopterin (BH4), a metabolite linked to neuropathic pain in both animal models and in human chronic pain sufferers.Gch1is induced in sensory neurons after nerve injury and its upregulation is responsible for increased BH4 levels. GCH1 protein has proven to be a difficult enzyme to pharmacologically target with small molecule inhibition. Thus, by establishing a platform to monitor and target inducedGch1 expression in individual injured dorsal root ganglion (DRG) neurons in vitro, we can screen for compounds that regulate its expression levels. This approach also allows us to gain valuable biological insights into the pathways and signals regulating GCH1 and BH4 levels upon nerve injury. This protocol is compatible with any transgenic reporter system in which the expression of an algesic gene (or multiple genes) can be monitored fluorescently. Such an approach can be scaled up for high-throughput compound screening and is amenable to transgenic mice as well as human stem cell-derived sensory neurons. Graphical overview.

2.
Sci Transl Med ; 14(660): eabj1531, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-36044597

RESUMEN

Increased tetrahydrobiopterin (BH4) generated in injured sensory neurons contributes to increased pain sensitivity and its persistence. GTP cyclohydrolase 1 (GCH1) is the rate-limiting enzyme in the de novo BH4 synthetic pathway, and human single-nucleotide polymorphism studies, together with mouse genetic modeling, have demonstrated that decreased GCH1 leads to both reduced BH4 and pain. However, little is known about the regulation of Gch1 expression upon nerve injury and whether this could be modulated as an analgesic therapeutic intervention. We performed a phenotypic screen using about 1000 bioactive compounds, many of which are target-annotated FDA-approved drugs, for their effect on regulating Gch1 expression in rodent injured dorsal root ganglion neurons. From this approach, we uncovered relevant pathways that regulate Gch1 expression in sensory neurons. We report that EGFR/KRAS signaling triggers increased Gch1 expression and contributes to neuropathic pain; conversely, inhibiting EGFR suppressed GCH1 and BH4 and exerted analgesic effects, suggesting a molecular link between EGFR/KRAS and pain perception. We also show that GCH1/BH4 acts downstream of KRAS to drive lung cancer, identifying a potentially druggable pathway. Our screen shows that pharmacologic modulation of GCH1 expression and BH4 could be used to develop pharmacological treatments to alleviate pain and identified a critical role for EGFR-regulated GCH1/BH4 expression in neuropathic pain and cancer in rodents.


Asunto(s)
Neoplasias Pulmonares , Neuralgia , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Biopterinas/análogos & derivados , Receptores ErbB/genética , Receptores ErbB/metabolismo , GTP Ciclohidrolasa/genética , GTP Ciclohidrolasa/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
3.
Cell Rep ; 37(13): 110176, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34965416

RESUMEN

Repair of genetic damage is coordinated in the context of chromatin, so cells dynamically modulate accessibility at DNA breaks for the recruitment of DNA damage response (DDR) factors. The identification of chromatin factors with roles in DDR has mostly relied on loss-of-function screens while lacking robust high-throughput systems to study DNA repair. In this study, we have developed two high-throughput systems that allow the study of DNA repair kinetics and the recruitment of factors to double-strand breaks in a 384-well plate format. Using a customized gain-of-function open-reading frame library ("ChromORFeome" library), we identify chromatin factors with putative roles in the DDR. Among these, we find the PHF20 factor is excluded from DNA breaks, affecting DNA repair by competing with 53BP1 recruitment. Adaptable for genetic perturbations, small-molecule screens, and large-scale analysis of DNA repair, these resources can aid our understanding and manipulation of DNA repair.


Asunto(s)
Cromatina/genética , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Histonas/metabolismo , Sistemas de Lectura Abierta , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Cromatina/metabolismo , Enzimas Reparadoras del ADN/genética , Ensayos Analíticos de Alto Rendimiento , Histonas/genética , Humanos , Cinética , Proteína 1 de Unión al Supresor Tumoral P53/genética
4.
PLoS One ; 16(9): e0254113, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34473715

RESUMEN

During late embryonic development of the cerebral cortex, the major class of cortical output neurons termed subcerebral projection neurons (SCPN; including the predominant population of corticospinal neurons, CSN) and the class of interhemispheric callosal projection neurons (CPN) initially express overlapping molecular controls that later undergo subtype-specific refinements. Such molecular refinements are largely absent in heterogeneous, maturation-stalled, neocortical-like neurons (termed "cortical" here) spontaneously generated by established embryonic stem cell (ES) and induced pluripotent stem cell (iPSC) differentiation. Building on recently identified central molecular controls over SCPN development, we used a combination of synthetic modified mRNA (modRNA) for Fezf2, the central transcription factor controlling SCPN specification, and small molecule screening to investigate whether distinct chromatin modifiers might complement Fezf2 functions to promote SCPN-specific differentiation by mouse ES (mES)-derived cortical-like neurons. We find that the inhibition of a specific histone deacetylase, Sirtuin 1 (SIRT1), enhances refinement of SCPN subtype molecular identity by both mES-derived cortical-like neurons and primary dissociated E12.5 mouse cortical neurons. In vivo, we identify that SIRT1 is specifically expressed by CPN, but not SCPN, during late embryonic and postnatal differentiation. Together, these data indicate that SIRT1 has neuronal subtype-specific expression in the mouse cortex in vivo, and that its inhibition enhances subtype-specific differentiation of highly clinically relevant SCPN / CSN cortical neurons in vitro.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Embrionarias de Ratones/citología , Neocórtex/citología , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Sirtuina 1/antagonistas & inhibidores , Animales , Diferenciación Celular , Células Cultivadas , Proteínas de Unión al ADN/metabolismo , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/metabolismo , Neocórtex/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , ARN Mensajero/genética , Factores de Transcripción/metabolismo
6.
Cell Stem Cell ; 27(1): 147-157.e7, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32413331

RESUMEN

Although susceptibility to cardiovascular disease (CVD) is different for every patient, why some patients with type 2 diabetes mellitus (T2DM) develop CVD while others are protected has not yet been clarified. Using T2DM-patient-derived human induced pluripotent stem cells (hiPSCs), we found that in patients protected from CVD, there was significantly elevated expression of an esterase, arylacetamide deacetylase (AADAC), in vascular smooth muscle cells (VSMCs). We overexpressed this esterase in human primary VSMCs and VSMCs differentiated from hiPSCs and observed that the number of lipid droplets was significantly diminished. Further metabolomic analyses revealed a marked reduction in storage lipids and an increase in membrane phospholipids, suggesting changes in the Kennedy pathway of lipid bioassembly. Cell migration and proliferation were also significantly decreased in AADAC-overexpressing VSMCs. Moreover, apolipoprotein E (Apoe)-knockout mice overexpressing VSMC-specific Aadac showed amelioration of atherosclerotic lesions. Our findings suggest that higher AADAC expression in VSMCs protects T2DM patients from CVD.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Animales , Proliferación Celular , Células Cultivadas , Humanos , Ratones , Ratones Endogámicos C57BL , Músculo Liso Vascular , Miocitos del Músculo Liso
7.
eNeuro ; 5(3)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29971247

RESUMEN

Human neurons expressing mutations associated with neurodegenerative disease are becoming more widely available. Hence, developing assays capable of accurately detecting changes that occur early in the disease process and identifying therapeutics able to slow these changes should become ever more important. Using automated live-cell imaging, we studied human motor neurons in the process of dying following neurotrophic factor withdrawal. We tracked different neuronal features, including cell body size, neurite length, and number of nodes. In particular, measuring the number of nodes in individual neurons proved to be an accurate predictor of relative health. Importantly, intermediate phenotypes were defined and could be used to distinguish between agents that could fully restore neurons and neurites and those only capable of maintaining neuronal cell bodies. Application of live-cell imaging to disease modeling has the potential to uncover new classes of therapeutic molecules that intervene early in disease progression.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Neuronas Motoras/patología , Neuronas Motoras/fisiología , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Benzazepinas/administración & dosificación , Muerte Celular , Células Cultivadas , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/patología , Células Madre Embrionarias/fisiología , Humanos , Indoles/administración & dosificación , Neuronas Motoras/efectos de los fármacos , Neuritas/patología , Neuritas/fisiología , Reconocimiento de Normas Patrones Automatizadas
8.
Cell Rep ; 18(6): 1484-1498, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28178525

RESUMEN

The mechanism underlying selective motor neuron (MN) death remains an essential question in the MN disease field. The MN disease spinal muscular atrophy (SMA) is attributable to reduced levels of the ubiquitous protein SMN. Here, we report that SMN levels are widely variable in MNs within a single genetic background and that this heterogeneity is seen not only in SMA MNs but also in MNs derived from controls and amyotrophic lateral sclerosis (ALS) patients. Furthermore, cells with low SMN are more susceptible to cell death. These findings raise the important clinical implication that some SMN-elevating therapeutics might be effective in MN diseases besides SMA. Supporting this, we found that increasing SMN across all MN populations using an Nedd8-activating enzyme inhibitor promotes survival in both SMA and ALS-derived MNs. Altogether, our work demonstrates that examination of human neurons at the single-cell level can reveal alternative strategies to be explored in the treatment of degenerative diseases.


Asunto(s)
Enfermedades Neuromusculares/metabolismo , Proteínas del Complejo SMN/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Análisis de la Célula Individual/métodos , Médula Espinal/metabolismo
9.
Stem Cell Reports ; 6(6): 993-1008, 2016 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-27304920

RESUMEN

Human pluripotent stem cells (hPSCs) offer a renewable source of cells that can be expanded indefinitely and differentiated into virtually any type of cell in the human body, including neurons. This opens up unprecedented possibilities to study neuronal cell and developmental biology and cellular pathology of the nervous system, provides a platform for the screening of chemical libraries that affect these processes, and offers a potential source of transplantable cells for regenerative approaches to neurological disease. However, defining protocols that permit a large number and high yield of neurons has proved difficult. We present differentiation protocols for the generation of distinct subtypes of neurons in a highly reproducible manner, with minimal experiment-to-experiment variation. These neurons form synapses with neighboring cells, exhibit spontaneous electrical activity, and respond appropriately to depolarization. hPSC-derived neurons exhibit a high degree of maturation and survive in culture for up to 4-5 months, even without astrocyte feeder layers.


Asunto(s)
Técnicas de Cultivo de Célula , Red Nerviosa/citología , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Biomarcadores/metabolismo , Factor Neurotrófico Derivado del Encéfalo/farmacología , Diferenciación Celular/efectos de los fármacos , Factor Neurotrófico Ciliar/farmacología , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Humanos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Red Nerviosa/fisiología , Neurogénesis/genética , Neuronas/clasificación , Neuronas/citología , Neuronas/metabolismo , Variaciones Dependientes del Observador , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Reproducibilidad de los Resultados , Proteínas Smad/antagonistas & inhibidores , Proteínas Smad/genética , Proteínas Smad/metabolismo , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
10.
Elife ; 3: e02809, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25233132

RESUMEN

Dysfunction or death of pancreatic ß cells underlies both types of diabetes. This functional decline begins with ß cell stress and de-differentiation. Current drugs for type 2 diabetes (T2D) lower blood glucose levels but they do not directly alleviate ß cell stress nor prevent, let alone reverse, ß cell de-differentiation. We show here that Urocortin 3 (Ucn3), a marker for mature ß cells, is down-regulated in the early stages of T2D in mice and when ß cells are stressed in vitro. Using an insulin expression-coupled lineage tracer, with Ucn3 as a reporter for the mature ß cell state, we screen for factors that reverse ß cell de-differentiation. We find that a small molecule inhibitor of TGFß receptor I (Alk5) protects cells from the loss of key ß cell transcription factors and restores a mature ß cell identity even after exposure to prolonged and severe diabetes.


Asunto(s)
Desdiferenciación Celular/efectos de los fármacos , Células Secretoras de Insulina/patología , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Biomarcadores/metabolismo , Citocinas/farmacología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Humanos , Resistencia a la Insulina , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/antagonistas & inhibidores , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Estrés Fisiológico/efectos de los fármacos , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Urocortinas/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(26): E2371-80, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23757500

RESUMEN

The clinical severity of the neurodegenerative disorder spinal muscular atrophy (SMA) is dependent on the levels of functional Survival Motor Neuron (SMN) protein. Consequently, current strategies for developing treatments for SMA generally focus on augmenting SMN levels. To identify additional potential therapeutic avenues and achieve a greater understanding of SMN, we applied in vivo, in vitro, and in silico approaches to identify genetic and biochemical interactors of the Drosophila SMN homolog. We identified more than 300 candidate genes that alter an Smn-dependent phenotype in vivo. Integrating the results from our genetic screens, large-scale protein interaction studies, and bioinformatic analysis, we define a unique interactome for SMN that provides a knowledge base for a better understanding of SMA.


Asunto(s)
Proteínas de Drosophila/genética , Genes de Insecto , Proteínas de Unión al ARN/genética , Animales , Animales Modificados Genéticamente , Redes Reguladoras de Genes , Humanos , Bases del Conocimiento , Unión Neuromuscular/genética , Fenotipo , Interferencia de ARN , Especificidad de la Especie , Atrofias Musculares Espinales de la Infancia/genética
12.
Cell Stem Cell ; 12(6): 713-26, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23602540

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease, characterized by motor neuron (MN) death, for which there are no truly effective treatments. Here, we describe a new small molecule survival screen carried out using MNs from both wild-type and mutant SOD1 mouse embryonic stem cells. Among the hits we found, kenpaullone had a particularly impressive ability to prolong the healthy survival of both types of MNs that can be attributed to its dual inhibition of GSK-3 and HGK kinases. Furthermore, kenpaullone also strongly improved the survival of human MNs derived from ALS-patient-induced pluripotent stem cells and was more active than either of two compounds, olesoxime and dexpramipexole, that recently failed in ALS clinical trials. Our studies demonstrate the value of a stem cell approach to drug discovery and point to a new paradigm for identification and preclinical testing of future ALS therapeutics.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Células Madre Embrionarias/citología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Células Madre Pluripotentes Inducidas/citología , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Inhibidores de Proteínas Quinasas/análisis , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Animales , Benzazepinas/química , Benzazepinas/farmacología , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Colestenonas/química , Colestenonas/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Indoles/química , Indoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Transgénicos , Neuronas Motoras/enzimología , Mutación , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Relación Estructura-Actividad , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1
13.
Nat Chem Biol ; 7(8): 544-52, 2011 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-21685895

RESUMEN

The motor neuron disease spinal muscular atrophy (SMA) results from mutations that lead to low levels of the ubiquitously expressed protein survival of motor neuron (SMN). An ever-increasing collection of data suggests that therapeutics that elevate SMN may be effective in treating SMA. We executed an image-based screen of annotated chemical libraries and discovered several classes of compounds that were able to increase cellular SMN. Among the most important was the RTK-PI3K-AKT-GSK-3 signaling cascade. Chemical inhibitors of glycogen synthase kinase 3 (GSK-3) and short hairpin RNAs (shRNAs) directed against this target elevated SMN levels primarily by stabilizing the protein. It was particularly notable that GSK-3 chemical inhibitors were also effective in motor neurons, not only in elevating SMN levels, but also in blocking the death that was produced when SMN was acutely reduced by an SMN-specific shRNA. Thus, we have established a screen capable of detecting drug-like compounds that correct the main phenotypic change underlying SMA.


Asunto(s)
Descubrimiento de Drogas/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Atrofia Muscular Espinal/tratamiento farmacológico , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Adulto , Animales , Benzazepinas/farmacología , Células Cultivadas , Preescolar , Células Madre Embrionarias , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Silenciador del Gen , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Humanos , Indoles/farmacología , Ratones , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Mutación , Factor de Crecimiento Derivado de Plaquetas/farmacología , Factor de Transcripción STAT1 , Bibliotecas de Moléculas Pequeñas , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
14.
Chromosome Res ; 15(2): 137-46, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17333538

RESUMEN

X-chromosome inactivation (XCI) evolved in mammals to deal with X-chromosome dosage imbalance between the XX female and the XY male. In eutherian mammals, random XCI of the soma requires a master regulatory locus known as the 'X-inactivation center' (XIC/Xic), wherein lies the noncoding XIST/Xist silencer RNA and its regulatory antisense Tsix gene. By contrast, marsupial XCI is imprinted to occur on the paternal X chromosome. To determine whether marsupials and eutherians share the XIC-driven mechanism, we search for the sequence equivalents in the genome of the South American opossum, Monodelphis domestica. Positional cloning and bioinformatic analysis reveal several interesting findings. First, protein-coding genes that flank the eutherian XIC are well-conserved in M. domestica, as well as in chicken, frog, and pufferfish. However, in M. domestica we fail to identify any recognizable XIST or TSIX equivalents. Moreover, cytogenetic mapping shows a surprising break in synteny with eutherian mammals and other vertebrates. Therefore, during the evolution of the marsupial X chromosome, one or more rearrangements broke up an otherwise evolutionarily conserved block of vertebrate genes. The failure to find XIST/TSIX in M. domestica may suggest that the ancestral XIC is too divergent to allow for detection by current methods. Alternatively, the XIC may have arisen relatively late in mammalian evolution, possibly in eutherians with the emergence of random XCI. The latter argues that marsupial XCI does not require XIST and opens the search for alternative mechanisms of dosage compensation.


Asunto(s)
Evolución Molecular , Genes Ligados a X , Monodelphis/genética , Cromosoma X , Animales , Paseo de Cromosoma , Biología Computacional , Análisis Citogenético , Proteínas de Unión al ADN/genética , Femenino , Genómica , Humanos , Masculino , Transportadores de Ácidos Monocarboxílicos/genética , ARN Largo no Codificante , ARN no Traducido/genética , Simportadores , Sintenía , Factores de Transcripción/genética , Vertebrados/genética , Inactivación del Cromosoma X
15.
Dev Cell ; 12(1): 57-71, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17199041

RESUMEN

X chromosome inactivation (XCI) is initiated by expression of the noncoding Xist RNA in the female embryo. Tsix, the antisense noncoding partner of Xist, serves as its regulator during both imprinted and random XCI. Here, we show that Tsix in part acts through a 34mer repeat, DXPas34. DXPas34 contains bidirectional promoter activity, producing overlapping forward and reverse transcripts. We generate three new Tsix alleles in mouse embryonic stem cells and show that, while the Tsix promoter is unexpectedly dispensable, DXPas34 plays dual positive-negative functions. At the onset of XCI, DXPas34 stimulates Tsix expression through its enhancer activity. Once XCI is established, DXPas34 becomes repressive and stably silences Tsix. Germline transmission of the DXPas34 mutation demonstrates its necessity for both random and imprinted XCI in mice. Intriguingly, sequence analysis suggests that DXPas34 could potentially have descended from an ancient retrotransposon. We hypothesize that DXPas34 was acquired by Tsix to regulate antisense function.


Asunto(s)
Impresión Genómica , ARN no Traducido/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Inactivación del Cromosoma X/genética , Animales , Secuencia de Bases , Secuencia de Consenso , Regulación hacia Abajo , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Marcación de Gen , Hibridación Fluorescente in Situ , Ratones , Modelos Genéticos , Datos de Secuencia Molecular , Filogenia , Regiones Promotoras Genéticas/genética , ARN Largo no Codificante , Eliminación de Secuencia , Regulación hacia Arriba , Cromosoma X/genética
16.
Science ; 295(5553): 345-7, 2002 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-11743158

RESUMEN

In mammals, X-inactivation silences one of two female X chromosomes. Silencing depends on the noncoding gene, Xist (inactive X-specific transcript), and is blocked by the antisense gene, Tsix. Deleting the choice/imprinting center in Tsix affects X-chromosome selection. Here, we identify the insulator and transcription factor, CTCF, as a candidate trans-acting factor for X-chromosome selection. The choice/imprinting center contains tandem CTCF binding sites that function in an enhancer-blocking assay. In vitro binding is reduced by CpG methylation and abolished by including non-CpG methylation. We postulate that Tsix and CTCF together establish a regulatable epigenetic switch for X-inactivation.


Asunto(s)
Elementos sin Sentido (Genética) , Proteínas de Unión al ADN/metabolismo , Compensación de Dosificación (Genética) , Silenciador del Gen , Proteínas Represoras , Factores de Transcripción/metabolismo , Cromosoma X/genética , Animales , Sitios de Unión , Factor de Unión a CCCTC , Islas de CpG , Metilación de ADN , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Impresión Genómica , Células HeLa , Humanos , Ratones , Modelos Genéticos , ARN Largo no Codificante , ARN no Traducido/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...