Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Intervalo de año de publicación
1.
Cancer Discov ; 11(5): 1082-1099, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33408242

RESUMEN

Effective data sharing is key to accelerating research to improve diagnostic precision, treatment efficacy, and long-term survival in pediatric cancer and other childhood catastrophic diseases. We present St. Jude Cloud (https://www.stjude.cloud), a cloud-based data-sharing ecosystem for accessing, analyzing, and visualizing genomic data from >10,000 pediatric patients with cancer and long-term survivors, and >800 pediatric sickle cell patients. Harmonized genomic data totaling 1.25 petabytes are freely available, including 12,104 whole genomes, 7,697 whole exomes, and 2,202 transcriptomes. The resource is expanding rapidly, with regular data uploads from St. Jude's prospective clinical genomics programs. Three interconnected apps within the ecosystem-Genomics Platform, Pediatric Cancer Knowledgebase, and Visualization Community-enable simultaneously performing advanced data analysis in the cloud and enhancing the Pediatric Cancer knowledgebase. We demonstrate the value of the ecosystem through use cases that classify 135 pediatric cancer subtypes by gene expression profiling and map mutational signatures across 35 pediatric cancer subtypes. SIGNIFICANCE: To advance research and treatment of pediatric cancer, we developed St. Jude Cloud, a data-sharing ecosystem for accessing >1.2 petabytes of raw genomic data from >10,000 pediatric patients and survivors, innovative analysis workflows, integrative multiomics visualizations, and a knowledgebase of published data contributed by the global pediatric cancer community.This article is highlighted in the In This Issue feature, p. 995.


Asunto(s)
Anemia de Células Falciformes/genética , Nube Computacional , Genómica , Difusión de la Información , Neoplasias/genética , Niño , Ecosistema , Hospitales Pediátricos , Humanos
2.
Gigascience ; 8(12)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31782791

RESUMEN

BACKGROUND: Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10-13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. RESULTS: Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2-6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ∼3.8-4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. CONCLUSIONS: This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.


Asunto(s)
Mapeo Contig/métodos , Glucosiltransferasas/genética , Fenilanina Amoníaco-Liasa/genética , Saccharum/crecimiento & desarrollo , Biomasa , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Variación Genética , Tamaño del Genoma , Genoma de Planta , Familia de Multigenes , Proteínas de Plantas/genética , Poliploidía , Regiones Promotoras Genéticas , Saccharum/genética
3.
Gigascience ; 8(12): 1–18, 2019.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17279

RESUMEN

Background: Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10–13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. Results: Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2–6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ~3.8–4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. Conclusions: This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.

4.
Gigascience, v. 8, n. 12, p. 1-18, nov. 2019
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2873

RESUMEN

Background: Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10–13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. Results: Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2–6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ~3.8–4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. Conclusions: This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...