Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Br J Pharmacol ; 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37055379

RESUMEN

BACKGROUND AND PURPOSE: Wnt binding to Frizzleds (FZD) is a crucial step that leads to the initiation of signalling cascades governing multiple processes during embryonic development, stem cell regulation and adult tissue homeostasis. Recent efforts have enabled us to shed light on Wnt-FZD pharmacology using overexpressed HEK293 cells. However, assessing ligand binding at endogenous receptor expression levels is important due to differential binding behaviour in a native environment. Here, we study FZD paralogue, FZD7 , and analyse its interactions with Wnt-3a in live CRISPR-Cas9-edited SW480 cells typifying colorectal cancer. EXPERIMENTAL APPROACH: SW480 cells were CRISPR-Cas9-edited to insert a HiBiT tag on the N-terminus of FZD7 , preserving the native signal peptide. These cells were used to study eGFP-Wnt-3a association with endogenous and overexpressed HiBiT-FZD7 using NanoBiT/bioluminescence resonance energy transfer (BRET) and NanoBiT to measure ligand binding and receptor internalization. KEY RESULTS: With this new assay the binding of eGFP-Wnt-3a to endogenous HiBiT-FZD7 was compared with overexpressed receptors. Receptor overexpression results in increased membrane dynamics, leading to an apparent decrease in binding on-rate and consequently in higher, up to 10 times, calculated Kd . Thus, measurements of binding affinities to FZD7 obtained in overexpressed cells are suboptimal compared with the measurements from endogenously expressing cells. CONCLUSIONS AND IMPLICATIONS: Binding affinity measurements in the overexpressing cells fail to replicate ligand binding affinities assessed in a (patho)physiologically relevant context where receptor expression is lower. Therefore, future studies on Wnt-FZD7 binding should be performed using receptors expressed under endogenous promotion.

2.
Cells ; 12(6)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36980204

RESUMEN

Reception of Wnt signals by cells is predominantly mediated by Frizzled receptors in conjunction with a co-receptor, the latter being LRP6 or LRP5 for the Wnt/ß-catenin signalling pathway. It is important that cells maintain precise control of receptor activation events in order to properly regulate Wnt/ß-catenin signalling as aberrant signalling can result in disease in humans. Phosphorylation of the intracellular domain (ICD) of LRP6 is well known to regulate Wntß-catenin signalling; however, less is known for regulatory post-translational modification events within the extracellular domain (ECD). Using a cell culture-based expression screen for functional regulators of LRP6, we identified a glycosyltransferase, B3GnT2-like, from a teleost fish (medaka) cDNA library, that modifies LRP6 and regulates Wnt/ß-catenin signalling. We provide both gain-of-function and loss-of-function evidence that the single human homolog, B3GnT2, promotes extension of polylactosamine chains at multiple N-glycans on LRP6, thereby enhancing trafficking of LRP6 to the plasma membrane and promoting Wnt/ß-catenin signalling. Our findings further highlight the importance of LRP6 as a regulatory hub in Wnt signalling and provide one of the few examples of how a specific glycosyltransferase appears to selectively target a signalling pathway component to alter cellular signalling events.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , beta Catenina , Animales , Humanos , beta Catenina/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Glicosilación , Vía de Señalización Wnt , Glicosiltransferasas/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo
3.
Handb Exp Pharmacol ; 269: 45-73, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490514

RESUMEN

The WNT/ß-catenin signalling pathway is a rich and complex network of cellular proteins that orchestrates diverse short-range cell-to-cell communication in metazoans and is essential for both embryonic development and adult homeostasis. Due to its fundamental importance in controlling cell behaviour at multiple levels, its deregulation is associated with a wide range of diseases in humans and identification of drugs targeting the pathway has attracted strong interest in the pharmaceutical sector. Transduction of WNT signals across the plasma membrane of cells involves a staggering degree of complexity and variety with respect to ligand-receptor, receptor-receptor and receptor-co-receptor interactions (Niehrs, Nat Rev Mol Cell Biol 13:767-779, 2012). Although the low-density-lipoprotein-receptor-related-protein (LRP) family is best known for its role in binding and endocytosis of lipoproteins, specific members appear to have additional roles in cellular communication. Indeed, for WNT/ß-catenin signalling one apparently universal requirement is the presence of either LRP5 or LRP6 in combination with one of the ten Frizzled (FZD) WNT receptors (FZD1-10). In the 20 years since their discovery as WNT/FZD co-receptors, research on the LRP family has contributed greatly to our understanding of WNT signalling and LRPs have emerged as central players in WNT/ß-catenin signalling. LRP5/6 are highly similar and represent the least redundant class of WNT receptor that transduce WNT/ß-catenin signalling from a wide range of different WNT and FZD subtypes. This apparent simplicity however belies the complex arrangement of binding sites in the extracellular domain (ECD) of LRP5/6, which regulate interaction not only with WNTs but also with several inhibitors of WNT signalling. This chapter provides a historical overview, chronologically charting this remarkable progress in the field during the last 20 years of research on LRPs and their role in WNT/-catenin signalling. A more focused overview of the structural, functional and mechanistic aspects of LRP biology is also provided, together with the implications this has for pharmacological targeting of this notoriously intractable pathway.


Asunto(s)
Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad , Humanos , Ligandos , Vía de Señalización Wnt , beta Catenina/metabolismo
4.
ACS Pharmacol Transl Sci ; 4(3): 1235-1245, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-34151213

RESUMEN

The WNT signaling system governs critical processes during embryonic development and tissue homeostasis, and its dysfunction can lead to cancer. Details concerning selectivity and differences in relative binding affinities of 19 mammalian WNTs to the cysteine-rich domain (CRD) of their receptors-the ten mammalian Frizzleds (FZDs)-remain unclear. Here, we used eGFP-tagged mouse WNT-3A for a systematic analysis of WNT interaction with every human FZD paralogue in HEK293A cells. Employing HiBiT-tagged full-length FZDs, we studied eGFP-WNT-3A binding kinetics, saturation binding, and competition binding with commercially available WNTs in live HEK293A cells using a NanoBiT/BRET-based assay. Further, we generated receptor chimeras to dissect the contribution of the transmembrane core to WNT-CRD binding. Our data pinpoint distinct WNT-FZD selectivity and shed light on the complex WNT-FZD binding mechanism. The methodological development described herein reveals yet unappreciated details of the complexity of WNT signaling and WNT-FZD interactions, providing further details with respect to WNT-FZD selectivity.

5.
Adv Mater ; 33(4): e2006434, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33325613

RESUMEN

Artificial multicellular systems are gaining importance in the field of tissue engineering and regenerative medicine. Reconstruction of complex tissue architectures in vitro is nevertheless challenging, and methods permitting controllable and high-throughput fabrication of complex multicellular architectures are needed. Here, a facile and high-throughput method is developed based on a tunable droplet-fusion technique, allowing programmed assembly of multiple cell spheroids into complex multicellular architectures. The droplet-fusion technique allows for construction of various multicellular architectures (double-spheroids, multi-spheroids, hetero-spheroids) in a miniaturized high-density array format. As an example of application, the propagation of Wnt signaling is investigated within hetero-spheroids formed from two fused Wnt-releasing and Wnt-reporter cell spheroids. The developed method provides an approach for miniaturized, high-throughput construction of complex 3D multicellular architectures and can be applied for studying various biological processes including cell signaling, cancer invasion, embryogenesis, and neural development.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Esferoides Celulares/citología , Humanos , Hidrodinámica
6.
Acta Biomater ; 115: 410-417, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32853811

RESUMEN

Development of non-viral gene vectors which can efficiently and safely transfect plasmid DNA and siRNA into cells is of great importance for gene therapy. Despite lots of efforts spent, it is still imperative to develop suitable gene vectors with better transfection efficiency and low cytotoxicity. To this end, we successfully designed, synthesized and screened a library of 120 polymers (via nucleophilic substitution reaction between dihalides and amines). With cell-based transfection screening assays, 120 polymers were tested to evaluate their transfection efficiency of transporting DNA and siRNA into cells. Our results indicated that hydrophobic modification could greatly enhance cationic polymers' transfection efficiency, and polymers with long linkers usually showed better transfection performance, especially for polymers with the linker of 1, 12-dibromododecane (L3 linker). Besides, polyalkylamines exhibited better transfection efficiency with the polymer particle size around 200 nm and the zeta potential in the range of + 40 mV to +50 mV. Interestingly, polymer particles made from N15HL3 not only exhibited better DNA transfection efficiency in HEK 293T cells but also showed higher siRNA transfection efficiency in U87 Luc-GFP cells together with low cell toxicity than Lipofectamine 2000 (one of commercial transfection reagents). Therefore, it is hoped that our study here not only provides promising gene vector candidates for further evaluation in gene therapy, but also provides valuable insights for better understanding of the relationship between the chemical structures and gene transfection efficiency to rationally design better non-viral gene vectors for gene therapy in the future.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Polímeros , ADN , Humanos , ARN Interferente Pequeño , Transfección
7.
Elife ; 92020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32441251

RESUMEN

Development and homeostasis of multicellular organisms is largely controlled by complex cell-cell signaling networks that rely on specific binding of secreted ligands to cell surface receptors. The Wnt signaling network, as an example, involves multiple ligands and receptors to elicit specific cellular responses. To understand the mechanisms of such a network, ligand-receptor interactions should be characterized quantitatively, ideally in live cells or tissues. Such measurements are possible using fluorescence microscopy yet challenging due to sample movement, low signal-to-background ratio and photobleaching. Here, we present a robust approach based on fluorescence correlation spectroscopy with ultra-high speed axial line scanning, yielding precise equilibrium dissociation coefficients of interactions in the Wnt signaling pathway. Using CRISPR/Cas9 editing to endogenously tag receptors with fluorescent proteins, we demonstrate that the method delivers precise results even with low, near-native amounts of receptors.


Asunto(s)
Microscopía/instrumentación , Microscopía/métodos , Receptores de Superficie Celular/metabolismo , Análisis de la Célula Individual/métodos , Análisis Espectral/métodos , Línea Celular , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes , Humanos , Ligandos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/química , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Interferencia de ARN , Transducción de Señal , Espectrometría de Fluorescencia/métodos
8.
J Biol Chem ; 295(26): 8759-8774, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32381507

RESUMEN

The Wingless/Int1 (Wnt) signaling system plays multiple, essential roles in embryonic development, tissue homeostasis, and human diseases. Although many of the underlying signaling mechanisms are becoming clearer, the binding mode, kinetics, and selectivity of 19 mammalian WNTs to their receptors of the class Frizzled (FZD1-10) remain obscure. Attempts to investigate Wnt-FZD interactions are hampered by the difficulties in working with Wnt proteins and their recalcitrance to epitope tagging. Here, we used a fluorescently tagged version of mouse Wnt-3a for studying Wnt-FZD interactions. We observed that the enhanced GFP (eGFP)-tagged Wnt-3a maintains properties akin to wild-type (WT) Wnt-3a in several biologically relevant contexts. The eGFP-tagged Wnt-3a was secreted in an evenness interrupted (EVI)/Wntless-dependent manner, activated Wnt/ß-catenin signaling in 2D and 3D cell culture experiments, promoted axis duplication in Xenopus embryos, stimulated low-density lipoprotein receptor-related protein 6 (LRP6) phosphorylation in cells, and associated with exosomes. Further, we used conditioned medium containing eGFP-Wnt-3a to visualize its binding to FZD and to quantify Wnt-FZD interactions in real time in live cells, utilizing a recently established NanoBRET-based ligand binding assay. In summary, the development of a biologically active, fluorescent Wnt-3a reported here opens up the technical possibilities to unravel the intricate biology of Wnt signaling and Wnt-receptor selectivity.


Asunto(s)
Receptores Frizzled/metabolismo , Vía de Señalización Wnt , Proteína Wnt3A/metabolismo , Animales , Receptores Frizzled/análisis , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Microscopía Confocal/métodos , Mapas de Interacción de Proteínas , Transporte de Proteínas , Proteína Wnt3A/análisis , Xenopus
9.
Biomater Sci ; 8(11): 3021-3025, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32322846

RESUMEN

A library of 83 structurally diverse cationic amino liposomes is rationally designed and parallelly synthesized for the transfection of plasmid DNA and siRNA. Our designed self-assembled liposomes not only exhibit excellent transfection efficiency in HEK 293T cells and mouse embryonic stem cells, but also show low cytotoxicity.


Asunto(s)
ADN/administración & dosificación , Técnicas de Transferencia de Gen , ARN Interferente Pequeño/administración & dosificación , Animales , Cationes , Línea Celular , Supervivencia Celular , Fibroblastos/metabolismo , Humanos , Liposomas , Ratones , Células Madre Embrionarias de Ratones/metabolismo , Plásmidos
10.
Cell Death Differ ; 26(10): 2125-2138, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30692643

RESUMEN

p53 is one of the most important tumour suppressor proteins currently known. It is activated in response to DNA damage and this activation leads to proliferation arrest and cell death. The abundance and activity of p53 are tightly controlled and reductions in p53's activity can contribute to the development of cancer. Here, we show that Fam83F increases p53 protein levels by protein stabilisation. Fam83F interacts with p53 and decreases its ubiquitination and degradation. Fam83F is induced in response to DNA damage and its overexpression also increases p53 activity in cell culture experiments and in zebrafish embryos. Downregulation of Fam83F decreases transcription of p53 target genes in response to DNA damage and increases cell proliferation, identifying Fam83F as an important regulator of the DNA damage response. Overexpression of Fam83F also enhances migration of cells harbouring mutant p53 demonstrating that it can also activate mutant forms of p53.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de Neoplasias/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos
11.
ACS Comb Sci ; 18(1): 43-50, 2016 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-26651853

RESUMEN

Cationic lipid-like molecules (lipidoids) are widely used for in vitro and in vivo gene delivery. Nearly all lipidoids developed to date employ double-tail or multiple-tail structures for transfection. Single-tail lipidoids are seldom considered for transfection as they have low efficiency in gene delivery. So far, there is no detailed study on the contribution to transfection efficiency of single-tail lipidoids when combined with standard double-tail lipidoids. Here, we use combinatorial chemistry to synthesize 17 double-tail and 17 single-tail lipidoids using thiol-yne and thiol-ene click chemistry, respectively. HEK 293T cells were used to analyze transfection efficiency by fluorescence microscopy and calculated based on the percentage of cells transfected. The size and zeta potential of liposomes and lipoplexes were characterized by dynamic light scattering (DLS). Intracellular DNA delivery and trafficking was further examined using confocal microscopy. Our study shows that combining single with double-tail lipidoids increases uptake of lipoplexes, as well as cellular transfection efficiency.


Asunto(s)
Técnicas Químicas Combinatorias/métodos , ADN/administración & dosificación , Lípidos/química , Plásmidos/administración & dosificación , Transfección , Cationes/síntesis química , Cationes/química , ADN/genética , Células HEK293 , Humanos , Lípidos/síntesis química , Liposomas/síntesis química , Liposomas/química , Plásmidos/genética , Transfección/métodos
12.
BMC Biotechnol ; 15: 92, 2015 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-26450685

RESUMEN

BACKGROUND: The p53 tumor suppressor protein is mainly regulated by alterations in the half-life of the protein, resulting in significant differences in p53 protein levels in cells. The major regulator of this process is Mdm2, which ubiquitinates p53 and targets it for proteasomal degradation. This process can be enhanced or reduced by proteins that associate with p53 or Mdm2 and several proteins have been identified with such an activity. Furthermore, additional ubiquitin ligases for p53 have been identified in recent years. Nevertheless, our understanding of how p53 abundance and Mdm2 activity are regulated remains incomplete. Here we describe a cell culture based overexpression screen to identify evolutionarily conserved regulators of the p53/Mdm2 circuit. The results from this large-scale screening method will contribute to a better understanding of the regulation of these important proteins. METHODS: Expression screening was based on co-transfection of H1299 cells with pools of cDNA's from a Medaka library together with p53, Mdm2 and, as internal control, Ror2. After cell lysis, SDS-PAGE/WB analysis was used to detect alterations in these proteins. RESULTS: More than one hundred hits that altered the abundance of either p53, Mdm2, or both were identified in the primary screen. Subscreening of the library pools that were identified in the primary screen identified several potential novel regulators of p53 and/or Mdm2. We also tested whether the human orthologues of the Medaka genes regulate p53 and/or Mdm2 abundance. All human orthologues regulated p53 and/or Mdm2 abundance in the same manner as the proteins from Medaka, which underscores the suitability of this screening methodology for the identification of new modifiers of p53 and Mdm2. CONCLUSIONS: Despite enormous efforts in the last two decades, many unknown regulators for p53 and Mdm2 abundance are predicted to exist. This cross-species approach to identify evolutionarily conserved regulators demonstrates that our Medaka unigene cDNA library represents a powerful tool to screen for these novel regulators of the p53/Mdm2 pathway.


Asunto(s)
Regulación de la Expresión Génica/genética , Oryzias/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Transducción de Señal/genética , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular Tumoral , Evolución Molecular , Biblioteca de Genes , Humanos
13.
Sci Rep ; 5: 10149, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25951521

RESUMEN

Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.


Asunto(s)
Ligandos , Receptores de Superficie Celular/metabolismo , Espectrometría de Fluorescencia/métodos , Línea Celular , Humanos , Microscopía Confocal/métodos , Unión Proteica
14.
Int J Pharm ; 488(1-2): 1-11, 2015 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-25895721

RESUMEN

Mesenchymal stem cells (MSCs) hold great promise in variety of therapeutic applications including tissue engineering and cancer therapy. Genetic modification of MSCs can be used to enhance the therapeutic effect of MSCs by facilitating a specific function or by transforming MSCs into more effective gene therapy tools. However, the successful generation of genetically modified MSCs is often limited by the poor transfection efficiency or high toxicity of available transfection reagents. In our previous study, we used thiol-yne click chemistry to develop new liposomal vectors, including ScreenFect(®) A (SF) (Li et al., 2012). In this study, we investigated the transfection performance of SF on MSCs. A comparative evaluation of transfection efficiency, cell viability and cellular DNA uptake was performed using the Lipofectamine™ 2000 (L2K) as a control, and the results show that SF is superior to L2K for MSC transfection. The presence of serum did not significantly influence the transfection efficiency of either SF or L2K but greatly reduced the viability of MSC transfected by L2K. The higher efficiency of SF-mediated transfection compared to L2K was also correlated with better proliferation of cells. These results were supported by monitoring the intracellular fate of DNA, which confirmed stable transportation of DNA from lysosomes and efficient nuclear localization. TGF-ß1 gene delivery by SF promoted MSC osteogenic differentiation in an osteogenic induction condition. As the first study of SF lipofection on stem cells, this study highlights a promising role of SF in gene delivery to MSCs as well as other stem cells to facilitate tissue engineering and other therapeutic effects based on genetically modified stem cells.


Asunto(s)
Liposomas/química , Células Madre Mesenquimatosas/citología , Transfección/métodos , Animales , Proliferación Celular , Supervivencia Celular , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/metabolismo , Masculino , Osteogénesis/fisiología , Ratas , Ratas Sprague-Dawley , Suero/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
16.
EMBO Rep ; 15(12): 1254-67, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25391905

RESUMEN

Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6) function as transmembrane receptors to transduce Wnt signals. A key mechanism for signalling is Wnt-induced serine/threonine phosphorylation at conserved PPPSPxS motifs in the LRP6 cytoplasmic domain, which promotes pathway activation. Conserved tyrosine residues are positioned close to all PPPSPxS motifs, which suggests they have a functional significance. Using a cell culture-based cDNA expression screen, we identified the non-receptor tyrosine kinases Src and Fer as novel LRP6 modifiers. Both Src and Fer associate with LRP6 and phosphorylate LRP6 directly. In contrast to the known PPPSPxS Ser/Thr kinases, tyrosine phosphorylation by Src and Fer negatively regulates LRP6-Wnt signalling. Epistatically, they function upstream of ß-catenin to inhibit signalling and in agreement with a negative role in regulating LRP6, MEF cells lacking these kinases show enhanced Wnt signalling. Wnt3a treatment of cells enhances tyrosine phosphorylation of endogenous LRP6 and, mechanistically, Src reduces cell surface LRP6 levels and disrupts LRP6 signalosome formation. Interestingly, CK1γ inhibits Fer-induced LRP6 phosphorylation, suggesting a mechanism whereby CK1γ acts to de-represses inhibitory LRP6 tyrosine phosphorylation. We propose that LRP6 tyrosine phosphorylation by Src and Fer serves a negative regulatory function to prevent over-activation of Wnt signalling at the level of the Wnt receptor, LRP6.


Asunto(s)
Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Tirosina/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Familia-src Quinasas/metabolismo , Línea Celular , Humanos , Hibridación in Situ , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Espectrometría de Masas , Fosforilación , Proteínas Tirosina Quinasas/genética , Transducción de Señal , Proteínas Wnt/genética , beta Catenina/genética , Familia-src Quinasas/genética
17.
J Cell Sci ; 127(Pt 18): 3970-82, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25074807

RESUMEN

After activation by Wnt/ß-Catenin ligands, a multi-protein complex assembles at the plasma membrane as membrane-bound receptors and intracellular signal transducers are clustered into the so-called Lrp6-signalosome [Corrected]. However, the mechanism of signalosome formation and dissolution is yet not clear. Our imaging studies of live zebrafish embryos show that the signalosome is a highly dynamic structure. It is continuously assembled by Dvl2-mediated recruitment of the transducer complex to the activated receptors and partially disassembled by endocytosis. We find that, after internalization, the ligand-receptor complex and the transducer complex take separate routes. The Wnt-Fz-Lrp6 complex follows a Rab-positive endocytic path. However, when still bound to the transducer complex, Dvl2 forms intracellular aggregates. We show that this endocytic process is not only essential for ligand-receptor internalization but also for signaling. The µ2-subunit of the endocytic Clathrin adaptor Ap2 interacts with Dvl2 to maintain its stability during endocytosis. Blockage of Ap2µ2 function leads to Dvl2 degradation, inhibiton of signalosome formation at the plasma membrane and, consequently, reduction of signaling. We conclude that Ap2µ2-mediated endocytosis is important to maintain Wnt/ß-catenin signaling in vertebrates.


Asunto(s)
Endocitosis , Complejos Multiproteicos/metabolismo , Vía de Señalización Wnt , Xenopus/metabolismo , beta Catenina/metabolismo , Complejo 2 de Proteína Adaptadora/genética , Complejo 2 de Proteína Adaptadora/metabolismo , Subunidades mu de Complejo de Proteína Adaptadora/genética , Subunidades mu de Complejo de Proteína Adaptadora/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas Dishevelled , Femenino , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Complejos Multiproteicos/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Unión Proteica , Xenopus/embriología , Xenopus/genética
18.
Bioconjug Chem ; 24(9): 1543-51, 2013 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-23909648

RESUMEN

Efficient delivery of plasmid DNA and siRNA into cells is essential for biological and biomedical research. Although significant efforts have been made to develop efficient nonviral vectors, such as cationic lipids and polymers, most of the vectors require multistep synthesis, which complicates both fast structural optimizations and combinatorial synthesis of such vectors. Here, we present a facile, single-step method based on an alkylation of amines, allowing for the fast parallel synthesis of libraries of cationic lipid-like molecules (lipidoids). We exploited the method to synthesize 200 lipidoids, which were screened for their transfection efficiency in HEK293T cells. The screen resulted in about 2% of new lipidoids capable of efficient cell transfection similar or higher than the efficiency of Lipofectamine 2000. In addition, we observed an enhancement of cellular transfection by combining single- with double-chain lipidoids, which was attributed to the different roles of the single- and double-tailed lipids in the mixed liposomes.


Asunto(s)
Aminas/química , ADN/administración & dosificación , Lípidos/química , Transfección , Alquilación , Aminas/síntesis química , Células HEK293 , Humanos , Lípidos/síntesis química
19.
Biomaterials ; 33(32): 8160-6, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22902058

RESUMEN

The delivery of nucleic acids such as plasmid DNA and siRNA into cells is a cornerstone of biological research and is of fundamental importance for medical therapeutics. Although most gene delivery therapeutics in clinical trials are based on viral vectors, safety issues remain a major concern. Non-viral vectors, such as cationic lipids and polymers, offer safer alternatives but their gene delivery efficiencies are usually not high enough for clinical applications. Thus, there is a high demand for more efficient and safe non-viral vectors. Here, we present a facile two-step method based on thiol-yne click chemistry for parallel synthesis of libraries of new biomimetic cationic thioether lipids. A library of novel lipids was synthesized using the developed method and more than 10% of the lipids showed highly efficient transfection in different cell types, surpassing the efficiency of several popular commercial transfection reagents. One of the new lipids showed highly efficient siRNA delivery to multiple cell types and could successfully deliver DNA plasmid to difficult-to-transfect mouse embryonic stem cells (mESC). Analysis of structure-activity relationship revealed that the length of the hydrophobic alkyl groups was a key parameter for efficient cell transfection and was more important for transfection efficiency than the nature of cationic head groups. The correlation of the size and surface charge of liposomes with transfection efficiency is described.


Asunto(s)
ADN/administración & dosificación , Lípidos/química , ARN Interferente Pequeño/administración & dosificación , Bibliotecas de Moléculas Pequeñas/química , Sulfuros/química , Transfección , Animales , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Cationes/síntesis química , Cationes/química , Línea Celular , Química Clic , Células Madre Embrionarias/metabolismo , Células HEK293 , Células HeLa , Humanos , Lípidos/síntesis química , Ratones , Bibliotecas de Moléculas Pequeñas/síntesis química , Sulfuros/síntesis química
20.
Neural Dev ; 7: 12, 2012 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-22475147

RESUMEN

BACKGROUND: A fundamental requirement for development of diverse brain regions is the function of local organizers at morphological boundaries. These organizers are restricted groups of cells that secrete signaling molecules, which in turn regulate the fate of the adjacent neural tissue. The thalamus is located in the caudal diencephalon and is the central relay station between the sense organs and higher brain areas. The mid-diencephalic organizer (MDO) orchestrates the development of the thalamus by releasing secreted signaling molecules such as Shh. RESULTS: Here we show that canonical Wnt signaling in the caudal forebrain is required for the formation of the Shh-secreting MD organizer in zebrafish. Wnt signaling induces the MDO in a narrow time window of 4 hours - between 10 and 14 hours post fertilization. Loss of Wnt3 and Wnt3a prevents induction of the MDO, a phenotype also observed upon blockage of canonical Wnt signaling per se. Pharmaceutical activation of the canonical Wnt pathways in Wnt3/Wnt3a compound morphant embryos is able to restore the lack of the MDO. After blockage of Wnt signaling or knock-down of Wnt3/Wnt3a we find an increase of apoptotic cells specifically within the organizer primordium. Consistently, blockage of apoptosis restores the thalamus organizer MDO in Wnt deficient embryos. CONCLUSION: We have identified canonical Wnt signaling as a novel pathway, that is required for proper formation of the MDO and consequently for the development of the major relay station of the brain - the thalamus. We propose that Wnt ligands are necessary to maintain the primordial tissue of the organizer during somitogenesis by suppressing Tp53-mediated apoptosis.


Asunto(s)
Prosencéfalo/metabolismo , Tálamo/metabolismo , Vía de Señalización Wnt/fisiología , Proteína Wnt3/metabolismo , Proteína Wnt3A/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Regulación del Desarrollo de la Expresión Génica , Proteína Wnt3/genética , Proteína Wnt3A/genética , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...