Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
New Phytol ; 240(1): 138-156, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37475146

RESUMEN

Vegetative transpiration (E) and photosynthetic carbon assimilation (A) are known to be seasonally dynamic, with changes in their ratio determining the marginal water use efficiency (WUE). Despite an understanding that stomata play a mechanistic role in regulating WUE, it is still unclear how stomatal and nonstomatal processes influence change in WUE over the course of the growing season. As a result, limited understanding of the primary physiological drivers of seasonal dynamics of canopy WUE remains one of the largest uncertainties in earth system model projections of carbon and water exchange in temperate deciduous forest ecosystems. We investigated seasonal patterns in leaf-level physiological, hydraulic, and anatomical properties, including the seasonal progress of the stomatal slope parameter (g1 ; inversely proportional to WUE) and the maximum carboxylation rate (Vcmax ). Vcmax and g1 were seasonally variable; however, their patterns were not temporally synchronized. g1 generally showed an increasing trend until late in the season, while Vcmax peaked during the midsummer months. Seasonal progression of Vcmax was primarily driven by changes in leaf structural, and anatomical characteristics, while seasonal changes in g1 were most strongly related to changes in Vcmax and leaf hydraulics. Using a seasonally variable Vcmax and g1 to parameterize a canopy-scale gas exchange model increased seasonally aggregated A and E by 3% and 16%, respectively.


Asunto(s)
Ecosistema , Agua , Estaciones del Año , Árboles/fisiología , Bosques , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Carbono , América del Norte
2.
New Phytol ; 238(6): 2345-2362, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36960539

RESUMEN

Terrestrial biosphere models (TBMs) include the representation of vertical gradients in leaf traits associated with modeling photosynthesis, respiration, and stomatal conductance. However, model assumptions associated with these gradients have not been tested in complex tropical forest canopies. We compared TBM representation of the vertical gradients of key leaf traits with measurements made in a tropical forest in Panama and then quantified the impact of the observed gradients on simulated canopy-scale CO2 and water fluxes. Comparison between observed and TBM trait gradients showed divergence that impacted canopy-scale simulations of water vapor and CO2 exchange. Notably, the ratio between the dark respiration rate and the maximum carboxylation rate was lower near the ground than at the top-of-canopy, leaf-level water-use efficiency was markedly higher at the top-of-canopy, and the decrease in maximum carboxylation rate from the top-of-canopy to the ground was less than TBM assumptions. The representation of the gradients of leaf traits in TBMs is typically derived from measurements made within-individual plants, or, for some traits, assumed constant due to a lack of experimental data. Our work shows that these assumptions are not representative of the trait gradients observed in species-rich, complex tropical forests.


Asunto(s)
Dióxido de Carbono , Árboles , Bosques , Fotosíntesis , Hojas de la Planta
3.
New Phytol ; 237(6): 2069-2087, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36527230

RESUMEN

The representation of stomatal regulation of transpiration and CO2 assimilation is key to forecasting terrestrial ecosystem responses to global change. Given its importance in determining the relationship between forest productivity and climate, accurate and mechanistic model representation of the relationship between stomatal conductance (gs ) and assimilation is crucial. We assess possible physiological and mechanistic controls on the estimation of the g1 (stomatal slope, inversely proportional to water use efficiency) and g0 (stomatal intercept) parameters, using diurnal gas exchange surveys and leaf-level response curves of six tropical broadleaf evergreen tree species. g1 estimated from ex situ response curves averaged 50% less than g1 estimated from survey data. While g0 and g1 varied between leaves of different phenological stages, the trend was not consistent among species. We identified a diurnal trend associated with g1 and g0 that significantly improved model projections of diurnal trends in transpiration. The accuracy of modeled gs can be improved by accounting for variation in stomatal behavior across diurnal periods, and between measurement approaches, rather than focusing on phenological variation in stomatal behavior. Additional investigation into the primary mechanisms responsible for diurnal variation in g1 will be required to account for this phenomenon in land-surface models.


Asunto(s)
Ecosistema , Agua , Agua/fisiología , Fotosíntesis/fisiología , Bosques , Hojas de la Planta/fisiología , Árboles/fisiología , Transpiración de Plantas , Estomas de Plantas/fisiología
4.
Tree Physiol ; 42(7): 1377-1395, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35134232

RESUMEN

Many terrestrial biosphere models depend on an understanding of the relationship between stomatal conductance and photosynthesis. However, unlike the measurement of photosynthetic parameters, such as the maximum carboxylation capacity, where standard methods (e.g., CO2 response or ACi curves) are widely accepted, a consensus method for empirically measuring parameters representing stomatal response has not yet emerged. Most models of stomatal response to environment represent stomatal conductance as being bounded by a lower intercept parameter (g0), and linearly scaled based on a multivariate term described by the stomatal slope parameter (g1). Here we employ the widely used Unified Stomatal Optimization model, to test whether g1 and g0 parameters are impacted by the choice of measurement method, either on an intact branch or a cut branch segment stored in water. We measured paired stomatal response curves on intact and excised branches of a hybrid poplar clone (Populus deltoides Bartr. × Populus nigra L. OP367), measured twice over a diurnal period. We found that predawn branch excision did not significantly affect measured g0 and g1 when measured within 4 h of excision. Measurement in the afternoon resulted in significantly higher values of g1 and lower values of g0, with values changing by 55% and 56%, respectively. Excision combined with afternoon measurement resulted in a marked effect on parameter estimates, with g1 increasing 89% from morning to afternoon and a 25% lower g1 for cut branches than those measured in situ. We also show that in hybrid poplar the differences in parameter estimates obtained from plants measured under different conditions can directly impact models of canopy function, reducing modeled transpiration by 18% over a simulated 12.5-h period. Although these results are only for a single isohydric woody species, our findings suggest that stomatal optimality parameters may not remain constant throughout the day.


Asunto(s)
Populus , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Transpiración de Plantas/fisiología , Populus/fisiología , Incertidumbre
5.
Glob Chang Biol ; 28(11): 3537-3556, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35090072

RESUMEN

Stomata play a central role in surface-atmosphere exchange by controlling the flux of water and CO2 between the leaf and the atmosphere. Representation of stomatal conductance (gsw ) is therefore an essential component of models that seek to simulate water and CO2 exchange in plants and ecosystems. For given environmental conditions at the leaf surface (CO2 concentration and vapor pressure deficit or relative humidity), models typically assume a linear relationship between gsw and photosynthetic CO2 assimilation (A). However, measurement of leaf-level gsw response curves to changes in A are rare, particularly in the tropics, resulting in only limited data to evaluate this key assumption. Here, we measured the response of gsw and A to irradiance in six tropical species at different leaf phenological stages. We showed that the relationship between gsw and A was not linear, challenging the key assumption upon which optimality theory is based-that the marginal cost of water gain is constant. Our data showed that increasing A resulted in a small increase in gsw at low irradiance, but a much larger increase at high irradiance. We reformulated the popular Unified Stomatal Optimization (USO) model to account for this phenomenon and to enable consistent estimation of the key conductance parameters g0 and g1 . Our modification of the USO model improved the goodness-of-fit and reduced bias, enabling robust estimation of conductance parameters at any irradiance. In addition, our modification revealed previously undetectable relationships between the stomatal slope parameter g1 and other leaf traits. We also observed nonlinear behavior between A and gsw in independent data sets that included data collected from attached and detached leaves, and from plants grown at elevated CO2 concentration. We propose that this empirical modification of the USO model can improve the measurement of gsw parameters and the estimation of plant and ecosystem-scale water and CO2  fluxes.


Asunto(s)
Estomas de Plantas , Transpiración de Plantas , Dióxido de Carbono , Ecosistema , Fotosíntesis , Hojas de la Planta/fisiología , Estomas de Plantas/fisiología , Agua/fisiología
7.
PLoS One ; 16(10): e0258791, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34665822

RESUMEN

Tropical forests are one of the main carbon sinks on Earth, but the magnitude of CO2 absorbed by tropical vegetation remains uncertain. Terrestrial biosphere models (TBMs) are commonly used to estimate the CO2 absorbed by forests, but their performance is highly sensitive to the parameterization of processes that control leaf-level CO2 exchange. Direct measurements of leaf respiratory and photosynthetic traits that determine vegetation CO2 fluxes are critical, but traditional approaches are time-consuming. Reflectance spectroscopy can be a viable alternative for the estimation of these traits and, because data collection is markedly quicker than traditional gas exchange, the approach can enable the rapid assembly of large datasets. However, the application of spectroscopy to estimate photosynthetic traits across a wide range of tropical species, leaf ages and light environments has not been extensively studied. Here, we used leaf reflectance spectroscopy together with partial least-squares regression (PLSR) modeling to estimate leaf respiration (Rdark25), the maximum rate of carboxylation by the enzyme Rubisco (Vcmax25), the maximum rate of electron transport (Jmax25), and the triose phosphate utilization rate (Tp25), all normalized to 25°C. We collected data from three tropical forest sites and included leaves from fifty-three species sampled at different leaf phenological stages and different leaf light environments. Our resulting spectra-trait models validated on randomly sampled data showed good predictive performance for Vcmax25, Jmax25, Tp25 and Rdark25 (RMSE of 13, 20, 1.5 and 0.3 µmol m-2 s-1, and R2 of 0.74, 0.73, 0.64 and 0.58, respectively). The models showed similar performance when applied to leaves of species not included in the training dataset, illustrating that the approach is robust for capturing the main axes of trait variation in tropical species. We discuss the utility of the spectra-trait and traditional gas exchange approaches for enhancing tropical plant trait studies and improving the parameterization of TBMs.


Asunto(s)
Fotosíntesis , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Respiración de la Célula , Transporte de Electrón , Bosques , Análisis de los Mínimos Cuadrados , Panamá , Proteínas de Plantas , Clima Tropical
8.
J Exp Bot ; 72(18): 6474-6489, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34235536

RESUMEN

Drought is the most important limitation on crop yield. Understanding and detecting drought stress in crops is vital for improving water use efficiency through effective breeding and management. Leaf reflectance spectroscopy offers a rapid, non-destructive alternative to traditional techniques for measuring plant traits involved in a drought response. We measured drought stress in six glasshouse-grown agronomic species using physiological, biochemical, and spectral data. In contrast to physiological traits, leaf metabolite concentrations revealed drought stress before it was visible to the naked eye. We used full-spectrum leaf reflectance data to predict metabolite concentrations using partial least-squares regression, with validation R2 values of 0.49-0.87. We show for the first time that spectroscopy may be used for the quantitative estimation of proline and abscisic acid, demonstrating the first use of hyperspectral data to detect a phytohormone. We used linear discriminant analysis and partial least squares discriminant analysis to differentiate between watered plants and those subjected to drought based on measured traits (accuracy: 71%) and raw spectral data (66%). Finally, we validated our glasshouse-developed models in an independent field trial. We demonstrate that spectroscopy can detect drought stress via underlying biochemical changes, before visual differences occur, representing a powerful advance for measuring limitations on yield.


Asunto(s)
Sequías , Fitomejoramiento , Ácido Abscísico , Productos Agrícolas , Hojas de la Planta
9.
J Exp Bot ; 72(18): 6175-6189, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34131723

RESUMEN

Partial least squares regression (PLSR) modelling is a statistical technique for correlating datasets, and involves the fitting of a linear regression between two matrices. One application of PLSR enables leaf traits to be estimated from hyperspectral optical reflectance data, facilitating rapid, high-throughput, non-destructive plant phenotyping. This technique is of interest and importance in a wide range of contexts including crop breeding and ecosystem monitoring. The lack of a consensus in the literature on how to perform PLSR means that interpreting model results can be challenging, applying existing models to novel datasets can be impossible, and unknown or undisclosed assumptions can lead to incorrect or spurious predictions. We address this lack of consensus by proposing best practices for using PLSR to predict plant traits from leaf-level hyperspectral data, including a discussion of when PLSR is applicable, and recommendations for data collection. We provide a tutorial to demonstrate how to develop a PLSR model, in the form of an R script accompanying this manuscript. This practical guide will assist all those interpreting and using PLSR models to predict leaf traits from spectral data, and advocates for a unified approach to using PLSR for predicting traits from spectra in the plant sciences.


Asunto(s)
Ecosistema , Hojas de la Planta , Análisis de los Mínimos Cuadrados , Fenotipo
10.
Tree Physiol ; 41(8): 1413-1424, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-33611562

RESUMEN

Understanding seasonal variation in photosynthesis is important for understanding and modeling plant productivity. Here, we used shotgun sampling to examine physiological, structural and spectral leaf traits of upper canopy, sun-exposed leaves in Quercus coccinea Münchh (scarlet oak) across the growing season in order to understand seasonal trends, explore the mechanisms underpinning physiological change and investigate the impact of extrapolating measurements from a single date to the whole season. We tested the hypothesis that photosynthetic rates and capacities would peak at the summer solstice, i.e., at the time of peak photoperiod. Contrary to expectations, our results reveal a late-season peak in both photosynthetic capacity and rate before the expected sharp decrease at the start of senescence. This late-season maximum occurred after the higher summer temperatures and vapor pressure deficit and was correlated with the recovery of leaf water content and increased stomatal conductance. We modeled photosynthesis at the top of the canopy and found that the simulated results closely tracked the maximum carboxylation capacity of Rubisco. For both photosynthetic capacity and modeled top-of-canopy photosynthesis, the maximum value was therefore not observed at the summer solstice. Rather, in each case, the measurements at and around the solstice were close to the overall seasonal mean, with values later in the season leading to deviations from the mean by up to 41 and 52%, respectively. Overall, we found that the expected Gaussian pattern of photosynthesis was not observed. We conclude that an understanding of species- and environment-specific changes in photosynthesis across the season is essential for correct estimation of seasonal photosynthetic capacity.


Asunto(s)
Quercus , Clima , Fotosíntesis , Hojas de la Planta , Estaciones del Año
11.
Environ Res Lett ; 15(7)2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-33868452

RESUMEN

Mobile sources emit particulate matter as well as precursors to particulate matter (PM2.5) and ground-level ozone, pollutants known to adversely impact human health. This study uses source-apportionment photochemical air quality modeling to estimate the health burden (expressed as incidence) of an array of PM2.5- and ozone-related adverse health impacts, including premature death, attributable to 17 mobile source sectors in the US in 2011 and 2025. Mobile sector-attributable air pollution contributes a substantial fraction of the overall pollution-related mortality burden in the U.S., accounting for about 20% of the PM2.5 and ozone-attributable deaths in 2011 (between 21 000 and 55 000 deaths, depending on the study used to derive the effect estimate). This value falls to about 13% (between 13 000 and 37 000 deaths) by 2025 due to regulatory and voluntary programs reducing emissions from mobile sources. Similar trends across all morbidity health impacts can also be observed. Emissions from on-road sources are the largest contributor to premature deaths; this is true for both 2011 (between 12 000 and 31 000 deaths) and 2025 (between 6700 and 18 000 deaths). Non-road construction engines, C3 marine engines and emissions from rail also contribute to large portions of premature deaths. Across the 17 mobile sectors modeled, the PM2.5-attributable mortality and morbidity burden falls between 2011 and 2025 for 12 sectors and increases for 5. Ozone-attributable mortality and morbidity burden increases between 2011 and 2025 for 10 sectors and falls for 7. These results extend the literature beyond generally aggregated mobile sector health burden toward a representation of highly-resolved source characterization of both current and future health burden. The quantified future mobile source health burden is a novel feature of this analysis and could prove useful for decisionmakers and affected stakeholders.

13.
Plant Cell Environ ; 42(8): 2472-2481, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31049970

RESUMEN

The maximum carboxylation capacity of Rubisco, Vc,max , is an important photosynthetic parameter that is key to accurate estimation of carbon assimilation. The gold-standard technique for determining Vc,max is to derive Vc,max from the initial slope of an A-Ci curve (the response of photosynthesis, A, to intercellular CO2 concentration, Ci ). Accurate estimates of Vc,max derived from an alternative and rapid "one-point" measurement of photosynthesis could greatly accelerate data collection and model parameterization. We evaluated the practical application of the one-point method in six species measured under standard conditions (saturating irradiance and 400 µmol CO2 mol-1 ) and under conditions that would increase the likelihood for successful estimation of Vc,max : (a) ensuring Rubisco-limited A by measuring at 300 µmol CO2 mol-1 and (b) allowing time for acclimation to saturating irradiance prior to measurement. The one-point method significantly underestimated Vc,max in four of the six species, providing estimates 21%-32% below fitted values. We identified ribulose-1,5-bisphosphate-limited A, light acclimation, and the use of an assumed respiration rate as factors that limited the effective use of the one-point method to accurately estimate Vc,max . We conclude that the one-point method requires a species-specific understanding of its application, is often unsuccessful, and must be used with caution.


Asunto(s)
Carbono/metabolismo , Modelos Biológicos , Fotosíntesis , Helianthus/metabolismo , Phaseolus/metabolismo , Poaceae/metabolismo , Populus/metabolismo , Quercus/metabolismo , Raphanus/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/fisiología
14.
Sci Total Environ ; 650(Pt 2): 2490-2498, 2019 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-30296769

RESUMEN

By-products of mobile source combustion processes, such as those associated with gasoline- and diesel-powered engines, include direct emissions of particulate matter as well as precursors to particulate matter and ground-level ozone. Human exposure to fine particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM2.5) is associated with increased incidence of premature mortality and morbidity outcomes. This study builds upon recent, detailed source-apportionment air quality modeling to project the health-related benefits of reducing PM2.5 from mobile sources across the contiguous U.S. in 2025. Updating a previously published benefits analysis approach, we develop national-level benefit per ton estimates for directly emitted PM2.5, SO2/pSO4, and NOX for 16 mobile source sectors spanning onroad vehicles, nonroad engines and equipment, trains, marine vessels, and aircraft. These benefit per ton estimates provide a reduced-form tool for estimating and comparing benefits across multiple mobile source emission scenarios and can be applied to assess the benefits of mobile source policies designed to improve air quality. We found the benefit per ton of directly emitted PM2.5 in 2025 ranges from $110,000 for nonroad agriculture sources to $700,000 for onroad light duty gas cars and motorcycles (in 2015 dollars and based on an estimate of PM-related mortality derived from the American Cancer Society cohort study). Benefit per ton values for SO2/pSO4 range from $52,000 for aircraft sources (including emissions from ground support vehicles) to $300,000 for onroad light duty diesel emissions. Benefit per ton values for NOX range from $2100 for C1 and C2 marine vessels to $7500 for "nonroad all other" mobile sources, including industrial, logging, and oil field sources. Benefit per ton estimates increase approximately 2.26-fold when using an alternative concentration response function to derive PM2.5-related mortality. We also report benefit per ton values for the eastern and western U.S. to account for broad spatial heterogeneity patterns in emissions reductions, population exposure and air quality benefits.

15.
Am J Bot ; 104(12): 1790-1801, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29196341

RESUMEN

PREMISE OF THE STUDY: Tropical Montane Cloud Forests (TMCFs) are important ecosystems to study and preserve because of their high biodiversity and critical roles in local and regional ecosystem processes. TMCFs may be particularly affected by changes in climate because of the narrow bands of microclimate they occupy and the vulnerability of TMCF species to projected increases in cloud base heights and drought. A comprehensive understanding of the structure and function of TMCFs is lacking and difficult to attain because of variation in topography within and across TMCF sites. This causes large differences in microclimate and forest structure at both large and small scales. METHODS: In this study, we estimated the abundance of the entire epiphyte community in the canopy (bryophytes, herbaceous vascular plants, woody epiphytes, and canopy dead organic matter) in six sites. In each of the sites we installed a complete canopy weather station to link epiphyte abundance to a number of microclimatic parameters. KEY RESULTS: We found significant differences in epiphyte abundance across the sites; epiphyte abundance increased with elevation and leaf wetness, but decreased as vapor pressure deficit (VPD) increased. Epiphyte abundance had the strongest relationship with VPD; there were differences in VPD that could not be explained by elevation alone. CONCLUSIONS: By measuring this proxy of canopy VPD, TMCF researchers will better understand differences in microclimate and plant community composition across TMCF sites. Incorporating such information in comparative studies will allow for more meaningful comparisons across TMCFs and will further conservation and management efforts in this ecosystem.


Asunto(s)
Altitud , Bosques , Plantas/clasificación , Clima Tropical , Presión de Vapor , Densidad de Población
16.
J Homosex ; 64(4): 450-465, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27185322

RESUMEN

Internalized homonegativity has been directly linked to depression among gay men. The aim of the study was to test whether internalized homonegativity is indirectly related to depressive symptoms via a sense of belonging to the broad gay community, gay groups, gay friends, and the general community. A sample of 246 self-identified Australian gay men, aged 18-82 years, completed the Internalized Homophobia Scale, the Psychological subscale of the Sense of Belonging Instrument, the Sense of Belonging Within Gay Communities Scale, and the Centre for Epidemiological Studies Depression Scale. Results indicated that the final model was an excellent fit to the data. Internalized homonegativity was indirectly related to depressive symptoms via sense of belonging to gay groups, with gay friends, and to the general community. Interventions aimed at reducing internalized homonegativity among gay men have the potential to enhance sense of belonging and, in turn, decrease depressive symptoms.


Asunto(s)
Mecanismos de Defensa , Depresión/psicología , Homofobia/psicología , Homosexualidad Masculina/psicología , Minorías Sexuales y de Género , Adulto , Anciano , Anciano de 80 o más Años , Australia , Humanos , Masculino , Persona de Mediana Edad , Escalas de Valoración Psiquiátrica , Características de la Residencia , Adulto Joven
17.
J Toxicol Environ Health A ; 70(3-4): 332-46, 2007 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-17365595

RESUMEN

As epidemiological work from around the world continues to tie PM2.5 to serious adverse health effects, including premature mortality, the U.S. Environmental Protection Agency (U.S. EPA) has developed a number of policies to reduce air pollution, including PM2.5. To assist in the benefit-cost analyses of these air pollution control policies, the U.S. EPA has developed the Environmental Benefits Mapping and Analysis Program (BenMAP). BenMAP is meant to (1) provide a flexible tool for systematically analyzing impacts of changes in environmental quality in a timely fashion, (2) ensure that stakeholders can understand the assumptions underlying the analysis, and (3) adequately address uncertainty and variability. BenMAP uses a "damage-function" approach to estimate the health benefits of a change in air quality. The major components of the damage-function approach are population estimates, population exposure, adverse health effects, and economic costs. To demonstrate BenMAP's ability to analyze PM2.5 pollution control policy scenarios, we assess two sample applications: (1) benefits of a national-level air quality control program, and (2) benefits of attaining two annual PM2.5 standards in California (annual average standards of 15 microg/m3 and 12 microg/m3). In the former, we estimate a scenario where control of PM2.5 emissions results in $100 billion of benefits annually. In the analysis of alternative standards, we estimate that attaining the more stringent standard (12 microg/m3) would result in approximately 2000 fewer premature deaths each year than the 15 microg/m3 achieves. BenMAP has a number of features to help clarify the analysis process. It allows the user to record in a configuration all of the choices made during an analysis. Configurations are especially useful for recreating already existing policy analyses. Also, BenMAP has a number of reporting options, including a set of mapping tools that allows users to visually inspect their inputs and results.


Asunto(s)
Material Particulado/análisis , Salud Pública/métodos , Política Pública , Programas Informáticos , Exposición a Riesgos Ambientales , Monitoreo del Ambiente/métodos , Humanos , Modelos Teóricos , Material Particulado/efectos adversos , Salud Pública/economía , Factores de Tiempo , Estados Unidos , United States Environmental Protection Agency
20.
Appl Opt ; 41(18): 3706-24, 2002 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-12078698

RESUMEN

Midwave and long-wave infrared propagation were measured in the marine atmosphere close to the surface of the ocean. Data were collected near San Diego Bay for two weeks in November 1996 over a 15-km horizontal path. The data are interpreted in terms of effects expected from molecules, aerosol particles, and refraction. Aerosol particles are a dominant influence in this coastal zone. They induce a diurnal variation in transmission as their character changes with regular changes in wind direction. A refractive propagation factor calculation is introduced, and it is systematically applied to the model and to the data analysis. It is shown that this refractive propagation factor is a necessary component of a complete near-sea-surface infrared transmission model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA