Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Lancet Infect Dis ; 23(6): e218-e226, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36773621

RESUMEN

A 48-year-old man with poorly controlled HIV presented with severe human monkeypox virus (hMPXV) infection, having completed 2 weeks of tecovirimat at another hospital. He had painful, ulcerating skin lesions on most of his body and oropharyngeal cavity, with subsequent Ludwig's angina requiring repeated surgical interventions. Despite commencing a second, prolonged course of tecovirimat, he did not objectively improve, and new lesions were still noted at day 24. Discussion at the UK National Health Service England High Consequence Infectious Diseases Network recommended the use of 3% topical and then intravenous cidofovir, which was given at 5 mg/kg; the patient made a noticeable improvement after the first intravenous dose. He received further intravenous doses at 7 days and 21 days after the dose and was discharged at day 52. Cidofovir is not licensed for use in treatment of hMPXV infection. Data for cidofovir use in hMPXV are restricted to studies in animals. Four other documented cases of cidofovir use against hMPXV have been reported in the USA in 2022, but we present its first use in the UK. The scarcity of studies into the use of cidofovir in this condition clearly shows the need for robust studies to assess efficacy, optimum dosage, timing, and route of administration.


Asunto(s)
Infecciones por VIH , Mpox , Organofosfonatos , Masculino , Humanos , Persona de Mediana Edad , Cidofovir/uso terapéutico , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Organofosfonatos/uso terapéutico , Mpox/tratamiento farmacológico , Medicina Estatal , Citosina/uso terapéutico , Antivirales/uso terapéutico
2.
RSC Med Chem ; 12(2): 213-221, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-34046610

RESUMEN

Background: mycobacterial cells contain complex mixtures of mycolic acid esters. These can be used as antigens recognised by antibodies in the serum of individuals with active tuberculosis, caused by Mycobacterium tuberculosis. In high burden populations, a significant number of false positives are observed; possibly these antigens are also recognised by antibodies generated by other mycobacterial infections, particularly ubiquitous 'environmental mycobacteria'. This suggests similar responses may be observed in a low burden TB population, particularly in groups regularly exposed to mycobacteria. Methods: ELISA using single synthetic trehalose mycolates corresponding to major classes in many mycobacteria was used to detect antibodies in serum of individuals with no known mycobacterial infection, comprising farmers, abattoir workers, and rural and urban populations. Results: serum from four Welsh or Scottish cohorts showed lower (with some antigens significantly lower) median responses than those reported for TB negatives from high-burden TB populations, and significantly lower responses than those with active TB. A small fraction, particularly older farmers, showed strong responses. A second study examined BCG vaccinated and non-vaccinated farmers and non-farmers. Farmers gave significantly higher median responses than non-farmers with three of five antigens, while there was no significant difference between vaccinated or non-vaccinated for either farmer or non-farmer groups. Conclusions: this initial study shows that serodiagnosis with mycobacterial lipid antigens can detect antibodies in a population sub-group that is significantly exposed to mycobacteria, in an assay that is not interfered with by vaccination. Given the links between mycobacterial exposure and a range of immune system diseases, further understanding such responses may provide a new opportunity for monitoring public health and directing treatment.

3.
Nucleic Acids Res ; 49(6): 3242-3262, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33660774

RESUMEN

The African trypanosome Trypanosoma brucei is a unicellular eukaryote, which relies on a protective variant surface glycoprotein (VSG) coat for survival in the mammalian host. A single trypanosome has >2000 VSG genes and pseudogenes of which only one is expressed from one of ∼15 telomeric bloodstream form expression sites (BESs). Infectious metacyclic trypanosomes present within the tsetse fly vector also express VSG from a separate set of telomeric metacyclic ESs (MESs). All MESs are silenced in bloodstream form T. brucei. As very little is known about how this is mediated, we performed a whole genome RNAi library screen to identify MES repressors. This allowed us to identify a novel SAP domain containing DNA binding protein which we called TbSAP. TbSAP is enriched at the nuclear periphery and binds both MESs and BESs. Knockdown of TbSAP in bloodstream form trypanosomes did not result in cells becoming more 'metacyclic-like'. Instead, there was extensive global upregulation of transcripts including MES VSGs, VSGs within the silent VSG arrays as well as genes immediately downstream of BES promoters. TbSAP therefore appears to be a novel chromatin protein playing an important role in silencing the extensive VSG repertoire of bloodstream form T. brucei.


Asunto(s)
Proteínas Protozoarias/metabolismo , Proteínas Represoras/metabolismo , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas , Proteínas Protozoarias/genética , Interferencia de ARN , Proteínas Represoras/genética , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(33): 16561-16570, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31358644

RESUMEN

Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.


Asunto(s)
Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Línea Celular , Epigénesis Genética , Transporte de Proteínas , Transcripción Genética , Trypanosoma brucei brucei/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA