Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667492

RESUMEN

Scedosporium species are human pathogenic fungi, responsible for chronic, localised, and life-threatening disseminated infections in both immunocompetent and immunocompromised individuals. The diagnosis of Scedosporium infections currently relies on non-specific CT, lengthy and insensitive culture from invasive biopsy, and the time-consuming histopathology of tissue samples. At present, there are no rapid antigen tests that detect Scedosporium-specific biomarkers. Here, we report the development of a rapid (30 min) and sensitive (pmol/L sensitivity) lateral-flow device (LFD) test, incorporating a Scedosporium-specific IgG1 monoclonal antibody (mAb), HG12, which binds to extracellular polysaccharide (EPS) antigens between ~15 kDa and 250 kDa secreted during the hyphal growth of the pathogens. The test is compatible with human serum and allows for the detection of the Scedosporium species most frequently reported as agents of human disease (Scedosporium apiospermum, Scedosporium aurantiacum, and Scedosporium boydii), with limits of detection (LODs) of the EPS biomarkers in human serum of ~0.81 ng/mL (S. apiospermum), ~0.94 ng/mL (S. aurantiacum), and ~1.95 ng/mL (S. boydii). The Scedosporium-specific LFD (ScedLFD) test therefore provides a potential novel opportunity for the detection of infections caused by different Scedosporium species.

2.
Front Cell Infect Microbiol ; 13: 1305662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38145040

RESUMEN

Mucoromycosis is a highly aggressive angio-invasive disease of humans caused by fungi in the zygomycete order, Mucorales. While Rhizopus arrhizus is the principal agent of mucoromycosis, other Mucorales fungi including Apophysomyces, Cunninghamella, Lichtheimia, Mucor, Rhizomucor and Syncephalastrum are able to cause life-threatening rhino-orbital-cerebral, pulmonary, gastro-intestinal and necrotising cutaneous infections in humans. Diagnosis of the disease currently relies on non-specific CT, lengthy and insensitive culture from invasive biopsy, and time-consuming histopathology of tissue samples. At present, there are no rapid antigen tests that detect Mucorales-specific biomarkers of infection, and which allow point-of-care diagnosis of mucoromycosis. Here, we report the development of an IgG2b monoclonal antibody (mAb), TG11, which binds to extracellular polysaccharide (EPS) antigens of between 20 kDa and 250 kDa secreted during hyphal growth of Mucorales fungi. The mAb is Mucorales-specific and does not cross-react with other yeasts and molds of clinical importance including Aspergillus, Candida, Cryptococcus, Fusarium, Lomentospora and Scedosporium species. Using the mAb, we have developed a Competitive lateral-flow device that allows rapid (30 min) detection of the EPS biomarker in human serum and bronchoalveolar lavage (BAL), with a limit of detection (LOD) in human serum of ~100 ng/mL serum (~224.7 pmol/L serum). The LFD therefore provides a potential novel opportunity for detection of mucoromycosis caused by different Mucorales species.


Asunto(s)
Fusarium , Mucorales , Humanos , Anticuerpos Monoclonales , Aspergillus , Biomarcadores
3.
J Fungi (Basel) ; 8(7)2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35887511

RESUMEN

Mucormycosis is a highly aggressive angio-invasive disease of humans caused by fungi in the zygomycete order, Mucorales. Though a number of different species can cause mucormycosis, the principal agent of the disease worldwide is Rhizopus arrhizus, which accounts for the majority of rhino-orbital-cerebral, pulmonary, and disseminated infections in immunocompromised individuals. It is also the main cause of life-threatening infections in patients with poorly controlled diabetes mellitus, and in corticosteroid-treated patients with SARS-CoV-2 infection, where it causes the newly described disease, COVID-19-associated mucormycosis (CAM). Diagnosis currently relies on non-specific CT, a lengthy and insensitive culture from invasive biopsy, and a time-consuming histopathology of tissue samples. At present, there are no rapid antigen tests for the disease that detect biomarkers of infection, and which allow point-of-care diagnosis. Here, we report the development of an IgG1 monoclonal antibody (mAb), KC9, which is specific to Rhizopus arrhizus var. arrhizus (syn. Rhizopus oryzae) and Rhizopus arrhizus var. delemar (Rhizopus delemar), and which binds to a 15 kDa extracellular polysaccharide (EPS) antigen secreted during hyphal growth of the pathogen. Using the mAb, we have developed a competitive lateral-flow device (LFD) that allows rapid (30 min) and sensitive (~50 ng/mL running buffer) detection of the EPS biomarker, and which is compatible with human serum (limit of detection of ~500 ng/mL) and bronchoalveolar lavage fluid (limit of detection of ~100 ng/mL). The LFD, therefore, provides a potential novel opportunity for the non-invasive detection of mucormycosis caused by Rhizopus arrhizus.

5.
J Fungi (Basel) ; 7(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396482

RESUMEN

Invasive pulmonary aspergillosis (IPA) caused by Aspergillus fumigatus is a life-threatening lung disease of immunocompromised patients. Diagnosis currently relies on non-specific chest CT, culture of the fungus from invasive lung biopsy, and detection of the cell wall carbohydrate galactomannan (GM) in serum or in BAL fluids recovered during invasive bronchoscopy. Urine provides an ideal bodily fluid for the non-invasive detection of pathogen biomarkers, with current urine-based immunodiagnostics for IPA focused on GM. Surrogate protein biomarkers might serve to improve disease detection. Here, we report the development of a monoclonal antibody (mAb), PD7, which is specific to A. fumigatus and related species in the section Fumigati, and which binds to its 18 kDa ribotoxin Asp f I. Using PD7, we show that the protein is secreted during hyphal development, and so represents an ideal candidate for detecting invasive growth. We have developed a lateral-flow device (Afu-LFD®) incorporating the mAb which has a limit of detection of ~15 ng Asp f I/mL urine. Preliminary evidence of the test's diagnostic potential is demonstrated with urine from a patient with acute lymphoid leukaemia with probable IPA. The Afu-LFD® therefore provides a potential novel opportunity for non-invasive urine-based detection of IPA caused by A. fumigatus.

6.
Front Microbiol ; 9: 1996, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30190717

RESUMEN

The human commensal yeast Candida is the fourth most common cause of hospital-acquired bloodstream infections, with Candida albicans accounting for the majority of the >400,000 life-threatening infections annually. Diagnosis of invasive candidiasis (IC), a disease encompassing candidemia (blood-borne yeast infection) and deep-seated organ infections, is a major challenge since clinical manifestations of the disease are indistinguishable from viral, bacterial and other fungal diseases, and diagnostic tests for biomarkers in the bloodstream such as PCR, ELISA, and pan-fungal ß-D-glucan lack either standardization, sensitivity, or specificity. Blood culture remains the gold standard for diagnosis, but test sensitivity is poor and turn-around time slow. Furthermore, cultures can only be obtained when the yeast resides in the bloodstream, with samples recovered from hematogenous infections often yielding negative results. Consequently, there is a pressing need for a diagnostic test that allows the identification of metastatic foci in deep-seated Candida infections, without the need for invasive biopsy. Here, we report the development of a highly specific mouse IgG3 monoclonal antibody (MC3) that binds to a putative ß-1,2-mannan epitope present in high molecular weight mannoproteins and phospholipomannans on the surface of yeast and hyphal morphotypes of C. albicans, and its use as a [64Cu]NODAGA-labeled tracer for whole-body pre-clinical imaging of deep-seated C. albicans infections using antibody-guided positron emission tomography and magnetic resonance imaging (immunoPET/MRI). When used in a mouse intravenous (i.v.) challenge model that faithfully mimics disseminated C. albicans infections in humans, the [64Cu]NODAGA-MC3 tracer accurately detects infections of the kidney, the principal site of blood-borne candidiasis in this model. Using a strain of the emerging human pathogen Candida auris that reacts with MC3 in vitro, but which is non-infective in i.v. challenged mice, we demonstrate the accuracy of the tracer in diagnosing invasive infections in vivo. This pre-clinical study demonstrates the principle of using antibody-guided molecular imaging for detection of deep organ infections in IC, without the need for invasive tissue biopsy.

7.
Theranostics ; 7(14): 3398-3414, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28912884

RESUMEN

Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of hematological malignancy or bone marrow transplant patients caused by the ubiquitous environmental fungus Aspergillus fumigatus. Current diagnostic tests for the disease lack sensitivity as well as specificity, and culture of the fungus from invasive lung biopsy, considered the gold standard for IPA detection, is slow and often not possible in critically ill patients. In a previous study, we reported the development of a novel non-invasive procedure for IPA diagnosis based on antibody-guided positron emission tomography and magnetic resonance imaging (immunoPET/MRI) using a [64Cu]DOTA-labeled mouse monoclonal antibody (mAb), mJF5, specific to Aspergillus. To enable translation of the tracer to the clinical setting, we report here the development of a humanised version of the antibody (hJF5), and pre-clinical imaging of lung infection using a [64Cu]NODAGA-hJF5 tracer. The humanised antibody tracer shows a significant increase in in vivo biodistribution in A. fumigatus infected lungs compared to its radiolabeled murine counterpart [64Cu]NODAGA-mJF5. Using reverse genetics of the pathogen, we show that the antibody binds to the antigenic determinant ß1,5-galactofuranose (Galf) present in a diagnostic mannoprotein antigen released by the pathogen during invasive growth in the lung. The absence of the epitope Galf in mammalian carbohydrates, coupled with the enhanced imaging capabilities of the hJF5 antibody, means that the [64Cu]NODAGA-hJF5 tracer developed here represents an ideal candidate for the diagnosis of IPA and translation to the clinical setting.


Asunto(s)
Anticuerpos Antifúngicos/inmunología , Anticuerpos Monoclonales Humanizados/inmunología , Aspergilosis/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/inmunología , Acetatos/química , Animales , Aspergillus nidulans/inmunología , Aspergillus nidulans/patogenicidad , Células CHO , Radioisótopos de Cobre/química , Cricetinae , Cricetulus , Femenino , Compuestos Heterocíclicos con 1 Anillo/química , Imagen por Resonancia Magnética/métodos , Ratones , Ratones Endogámicos C57BL , Radiofármacos/química
8.
Proc Natl Acad Sci U S A ; 113(8): E1026-33, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26787852

RESUMEN

Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease caused by the fungus Aspergillus fumigatus, and is a leading cause of invasive fungal infection-related mortality and morbidity in patients with hematological malignancies and bone marrow transplants. We developed and tested a novel probe for noninvasive detection of A. fumigatus lung infection based on antibody-guided positron emission tomography and magnetic resonance (immunoPET/MR) imaging. Administration of a [(64)Cu]DOTA-labeled A. fumigatus-specific monoclonal antibody (mAb), JF5, to neutrophil-depleted A. fumigatus-infected mice allowed specific localization of lung infection when combined with PET. Optical imaging with a fluorochrome-labeled version of the mAb showed colocalization with invasive hyphae. The mAb-based newly developed PET tracer [(64)Cu]DOTA-JF5 distinguished IPA from bacterial lung infections and, in contrast to [(18)F]FDG-PET, discriminated IPA from a general increase in metabolic activity associated with lung inflammation. To our knowledge, this is the first time that antibody-guided in vivo imaging has been used for noninvasive diagnosis of a fungal lung disease (IPA) of humans, an approach with enormous potential for diagnosis of infectious diseases and with potential for clinical translation.


Asunto(s)
Anticuerpos Antifúngicos/farmacología , Anticuerpos Monoclonales de Origen Murino/farmacología , Aspergillus fumigatus , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Aspergilosis Pulmonar/diagnóstico por imagen , Animales , Humanos , Ratones , Radiografía
9.
PLoS One ; 9(1): e84789, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24392156

RESUMEN

The fungal genus Trichosporon contains emerging opportunistic pathogens of humans, and is the third most commonly isolated non-candidal yeast from humans. Trichosporon asahii and T. asteroides are the most important species causing disseminated disease in immunocompromised patients, while inhalation of T. asahii spores is the most important cause of summer-type hypersensitivity pneumonitis in healthy individuals. Trichosporonosis is misdiagnosed as candidiasis or cryptococcosis due to a lack of awareness and the ambiguity of diagnostic tests for these pathogens. In this study, hybridoma technology was used to produce two murine monoclonal antibodies (MAbs), CA7 and TH1, for detection and differentiation of Trichosporon from other human pathogenic yeasts and moulds. The MAbs react with extracellular antigens from T. asahii and T. asteroides, but do not recognise other related Trichosporon spp., or unrelated pathogenic yeasts and moulds including Candida, Cryptococcus, Aspergillus, Fusarium, and Scedosporium spp., or the etiologic agents of mucormycosis. Immunofluorescence and Western blotting studies show that MAb CA7, an immunoglobulin G1 (IgG1), binds to a major 60 kDa glycoprotein antigen produced on the surface of hyphae, while TH1, an immunoglobulin M (IgM), binds to an antigen produced on the surface of conidia. The MAbs were used in combination with a standard mycological growth medium (Sabouraud Dextrose Agar) to develop an enzyme-linked immunosorbent assay (ELISA) for differentiation of T. asahii from Candida albicans and Cryptococcus neoformans in single and mixed species cultures. The MAbs represent a major advance in the identification of T. asahii and T. asteroides using standard mycological identification methods.


Asunto(s)
Anticuerpos Monoclonales , Técnicas de Tipificación Micológica , Trichosporon/clasificación , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos/inmunología , Antígenos Fúngicos/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Sensibilidad y Especificidad , Trichosporon/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...