Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 201: 107792, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37285692

RESUMEN

Tipburn is a physiological disorder of lettuce (Lactuca sativa) and other leafy crops that causes external and internal leaf discolouration and results in serious quality issues for the fresh produce industry. Tipburn occurrence is difficult to predict and no completely effective control methods exist. This is compounded by poor knowledge of the underlying physiological and molecular basis of the condition, which appears to be associated with deficiency of calcium and other nutrients. Vacuolar calcium transporters, which are involved in calcium homeostasis in Arabidopsis, show differential expression in tipburn-resistant and susceptible Brassica oleracea lines. We therefore investigated expression of a subset of L. sativa vacuolar calcium transporter homologues, belonging to the Ca2+/H+ exchanger and Ca2+-ATPase classes, in tipburn-resistant and susceptible cultivars. This indicated that some L. sativa vacuolar calcium transporter homologues belonging to these gene classes exhibited higher expression levels in resistant cultivars, whilst others had higher expression in susceptible cultivars or were independent of tipburn phenotype. In addition, some homologues were more highly expressed in symptomatic versus asymptomatic leaves in susceptible cultivars, suggesting that tipburn-induced increases in expression are unsuccessful in conferring resistance and that differential baseline expression of such genes is important for tipburn resistance. Knowledge of individual genes associated with tipburn resistance will improve breeding for such traits and the development of resistant lettuce varieties.


Asunto(s)
Calcio , Lactuca , Lactuca/metabolismo , Calcio/metabolismo , Adenosina Trifosfatasas/metabolismo , Fitomejoramiento , Fenotipo
2.
New Phytol ; 236(5): 1691-1707, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35775998

RESUMEN

Self-incompatibility (SI) involves specific interactions during pollination to reject incompatible ('self') pollen, preventing inbreeding in angiosperms. A key event observed in pollen undergoing the Papaver rhoeas SI response is the formation of punctate F-actin foci. Pollen tube growth is heavily energy-dependent, yet ATP levels in pollen tubes have not been directly measured during SI. Here we used transgenic Arabidopsis lines expressing the Papaver pollen S-determinant to investigate a possible link between ATP levels, cytosolic pH ([pH]cyt ) and alterations to the actin cytoskeleton. We identify for the first time that SI triggers a rapid and significant ATP depletion in pollen tubes. Artificial depletion of ATP triggered cytosolic acidification and formation of actin aggregates. We also identify in vivo, evidence for a threshold [pH]cyt of 5.8 for actin foci formation. Imaging revealed that SI stimulates acidic cytosolic patches adjacent to the plasma membrane. In conclusion, this study provides evidence that ATP depletion plays a pivotal role in SI upstream of programmed cell death and reveals a link between the cellular energy status, cytosolic acidification and alterations to the actin cytoskeleton in regulating Papaver SI in pollen tubes.


Asunto(s)
Arabidopsis , Papaver , Tubo Polínico , Actinas/metabolismo , Proteínas de Plantas/metabolismo , Papaver/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Concentración de Iones de Hidrógeno , Adenosina Trifosfato/metabolismo
3.
New Phytol ; 234(2): 412-421, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35075689

RESUMEN

Damage can be signalled by extracellular ATP (eATP) using plasma membrane (PM) receptors to effect cytosolic free calcium ion ([Ca2+ ]cyt ) increase as a second messenger. The downstream PM Ca2+ channels remain enigmatic. Here, the Arabidopsis thaliana Ca2+ channel subunit CYCLIC NUCLEOTIDE-GATED CHANNEL2 (CNGC2) was identified as a critical component linking eATP receptors to downstream [Ca2+ ]cyt signalling in roots. Extracellular ATP-induced changes in single epidermal cell PM voltage and conductance were measured electrophysiologically, changes in root [Ca2+ ]cyt were measured with aequorin, and root transcriptional changes were determined by quantitative real-time PCR. Two cngc2 loss-of-function mutants were used: cngc2-3 and defence not death1 (which expresses cytosolic aequorin). Extracellular ATP-induced transient depolarization of Arabidopsis root elongation zone epidermal PM voltage was Ca2+ dependent, requiring CNGC2 but not CNGC4 (its channel co-subunit in immunity signalling). Activation of PM Ca2+ influx currents also required CNGC2. The eATP-induced [Ca2+ ]cyt increase and transcriptional response in cngc2 roots were significantly impaired. CYCLIC NUCLEOTIDE-GATED CHANNEL2 is required for eATP-induced epidermal Ca2+ influx, causing depolarization leading to [Ca2+ ]cyt increase and damage-related transcriptional response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/farmacología , Células Epidérmicas , Epidermis/metabolismo , Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos/farmacología , Transducción de Señal
4.
Front Plant Sci ; 13: 1098146, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36714742

RESUMEN

Phosphate deprivation compromises plant productivity and modulates immunity. DAMP signalling by extracellular ATP (eATP) could be compromised under phosphate deprivation by the lowered production of cytosolic ATP and the need to salvage eATP as a nutritional phosphate source. Phosphate-starved roots of Arabidopsis can still sense eATP, indicating robustness in receptor function. However, the resultant cytosolic free Ca2+ signature is impaired, indicating modulation of downstream components. This perspective on DAMP signalling by extracellular ATP (eATP) addresses the salvage of eATP under phosphate deprivation and its promotion of immunity, how Ca2+ signals are generated and how the Ca2+ signalling pathway could be overcome to allow beneficial fungal root colonization to fulfill phosphate demands. Safe passage for an endophytic fungus allowing root colonization could be achieved by its down-regulation of the Ca2+ channels that act downstream of the eATP receptors and by also preventing ROS accumulation, thus further impairing DAMP signalling.

5.
Plant J ; 109(6): 1386-1396, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919778

RESUMEN

Extracellular ATP (eATP) is known to act as a danger signal in both plants and animals. In plants, eATP is recognized by the plasma membrane (PM)-localized receptor P2K1 (LecRK-I.9). Among the first measurable responses to eATP addition is a rapid rise in cytoplasmic free calcium levels ([Ca2+ ]cyt ), which requires P2K1. However, the specific transporter/channel proteins that mediate this rise in [Ca2+ ]cyt are unknown. Through a forward genetic screen, we identified an Arabidopsis ethylmethanesulfonate (EMS) mutant impaired in the [Ca2+ ]cyt response to eATP. Positional cloning revealed that the mutation resided in the cngc6 gene, which encodes cyclic nucleotide-gated ion channel 6 (CNGC6). Mutation of the CNGC6 gene led to a notable decrease in the PM inward Ca2+ current in response to eATP. eATP-induced mitogen-activated protein kinase activation and gene expression were also significantly lower in cngc6 mutant plants. In addition, cngc6 mutant plants were also more susceptible to the bacterial pathogen Pseudomonas syringae. Taken together, our results indicate that CNGC6 plays a crucial role in mediating eATP-induced [Ca2+ ]cyt signaling, as well as plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Canales Catiónicos Regulados por Nucleótidos Cíclicos , Adenosina Trifosfato/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos , Inmunidad de la Planta/genética
6.
Front Plant Sci ; 12: 788514, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925428

RESUMEN

Extracellular ATP (eATP) is now held to be a constitutive damage-associated molecular pattern (DAMP) that is released by wounding, herbivory or pathogen attack. The concentration of eATP must be tightly regulated as either depletion or overload leads to cell death. In Arabidopsis thaliana, sensing of eATP is by two plasma membrane legume-like lectin serine-threonine receptor kinases (P2K1 and P2K2), although other receptors are postulated. The transcriptional response to eATP is dominated by wound- and defense-response genes. Wounding and pathogen attack can involve the cyclic nucleotides cyclic AMP (cAMP) and cyclic GMP (cGMP) which, in common with eATP, can increase cytosolic-free Ca2+ as a second messenger. This perspective on DAMP signaling by eATP considers the possibility that the eATP pathway involves production of cyclic nucleotides to promote opening of cyclic nucleotide-gated channels and so elevates cytosolic-free Ca2+. In silico analysis of P2K1 and P2K2 reveals putative adenylyl and guanylyl kinase sequences that are the hallmarks of "moonlighting" receptors capable of cAMP and cGMP production. Further, an Arabidopsis loss of function cngc mutant was found to have an impaired increase in cytosolic-free Ca2+ in response to eATP. A link between eATP, cyclic nucleotides, and Ca2+ signaling therefore appears credible.

7.
New Phytol ; 231(1): 243-254, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33586181

RESUMEN

Cellular calcium (Ca) transients are endogenous signals involved in local and systemic signaling and defense activation upon environmental stress, including wounding and herbivory. Still, not all Ca2+ channels contributing to the signaling have been identified, nor are their modes of action fully known. Plant annexins are proteins capable of binding to anionic phospholipids and can exhibit Ca channel-like activity. Arabidopsis ANNEXIN1 (ANN1) is suggested to contribute to Ca transport. Here, we report that wounding and simulated-herbivory-induced cytosolic free Ca elevation was impaired in systemic leaves in ann1 loss-of-function plants. We provide evidence for a role of ANN1 in local and systemic defense of plants attacked by herbivorous Spodoptera littoralis larvae. Bioassays identified ANN1 as a positive defense regulator. Spodoptera littoralis feeding on ann1 gained significantly more weight than larvae feeding on wild-type, whereas those feeding on ANN1-overexpressing lines gained less weight. Herbivory and wounding both induced defense-related responses on treated leaves, such as jasmonate accumulation and defense gene expression. These responses remained local and were strongly reduced in systemic leaves in ann1 plants. Our results indicate that ANN1 plays an important role in activation of systemic rather than local defense in plants attacked by herbivorous insects.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Herbivoria , Oxilipinas , Hojas de la Planta/metabolismo , Spodoptera
8.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33419052

RESUMEN

Extracellular ATP (eATP) has long been established in animals as an important signalling molecule but this is less understood in plants. The identification of Arabidopsis thaliana DORN1 (Does Not Respond to Nucleotides) as the first plant eATP receptor has shown that it is fundamental to the elevation of cytosolic free Ca2+ ([Ca2+]cyt) as a possible second messenger. eATP causes other downstream responses such as increase in reactive oxygen species (ROS) and nitric oxide, plus changes in gene expression. The plasma membrane Ca2+ influx channels involved in eATP-induced [Ca2+]cyt increase remain unknown at the genetic level. Arabidopsis thaliana Annexin 1 has been found to mediate ROS-activated Ca2+ influx in root epidermis, consistent with its operating as a transport pathway. In this study, the loss of function Annexin 1 mutant was found to have impaired [Ca2+]cyt elevation in roots in response to eATP or eADP. Additionally, this annexin was implicated in modulating eATP-induced intracellular ROS accumulation in roots as well as expression of eATP-responsive genes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Anexinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Calcio/metabolismo , Raíces de Plantas/metabolismo , Adenosina Difosfato/metabolismo , Anexinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Espacio Extracelular/metabolismo , Regulación de la Expresión Génica de las Plantas , Liasas/genética , Liasas/metabolismo , Mutación , Raíces de Plantas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Mecánico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Int J Mol Sci ; 22(2)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467208

RESUMEN

Plant cyclic nucleotide-gated channels (CNGCs) are tetrameric cation channels which may be activated by the cyclic nucleotides (cNMPs) adenosine 3',5'-cyclic monophosphate (cAMP) and guanosine 3',5'-cyclic monophosphate (cGMP). The genome of Arabidopsis thaliana encodes 20 CNGC subunits associated with aspects of development, stress response and immunity. Recently, it has been demonstrated that CNGC subunits form heterotetrameric complexes which behave differently from the homotetramers produced by their constituent subunits. These findings have widespread implications for future signalling research and may help explain how specificity can be achieved by CNGCs that are known to act in disparate pathways. Regulation of complex formation may involve cyclic nucleotide-gated channel-like proteins.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas de Plantas/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Multimerización de Proteína , Procesamiento Proteico-Postraduccional
10.
EMBO J ; 40(2): e104559, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33372703

RESUMEN

The transient elevation of cytosolic free calcium concentration ([Ca2+ ]cyt ) induced by cold stress is a well-established phenomenon; however, the underlying mechanism remains elusive. Here, we report that the Ca2+ -permeable transporter ANNEXIN1 (AtANN1) mediates cold-triggered Ca2+ influx and freezing tolerance in Arabidopsis thaliana. The loss of function of AtANN1 substantially impaired freezing tolerance, reducing the cold-induced [Ca2+ ]cyt increase and upregulation of the cold-responsive CBF and COR genes. Further analysis showed that the OST1/SnRK2.6 kinase interacted with and phosphorylated AtANN1, which consequently enhanced its Ca2+ transport activity, thereby potentiating Ca2+ signaling. Consistent with these results and freezing sensitivity of ost1 mutants, the cold-induced [Ca2+ ]cyt elevation in the ost1-3 mutant was reduced. Genetic analysis indicated that AtANN1 acts downstream of OST1 in responses to cold stress. Our data thus uncover a cascade linking OST1-AtANN1 to cold-induced Ca2+ signal generation, which activates the cold response and consequently enhances freezing tolerance in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Respuesta al Choque por Frío/fisiología , Membrana Celular/metabolismo , Frío , Congelación , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas Quinasas/metabolismo , Factores de Transcripción/metabolismo
11.
Plants (Basel) ; 9(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942534

RESUMEN

The root tip responds to mechanical stimulation with a transient increase in cytosolic free calcium as a possible second messenger. Although the root tip will grow through a heterogeneous soil nutrient supply, little is known of the consequence of nutrient deprivation for such signalling. Here, the effect of inorganic phosphate deprivation on the root's mechano-stimulated cytosolic free calcium increase is investigated. Arabidopsisthaliana (cytosolically expressing aequorin as a bioluminescent free calcium reporter) is grown in zero or full phosphate conditions, then roots or root tips are mechanically stimulated. Plants also are grown vertically on a solid medium so their root skewing angle (deviation from vertical) can be determined as an output of mechanical stimulation. Phosphate starvation results in significantly impaired cytosolic free calcium elevation in both root tips and whole excised roots. Phosphate-starved roots sustain a significantly lower root skewing angle than phosphate-replete roots. These results suggest that phosphate starvation causes a dampening of the root mechano-signalling system that could have consequences for growth in hardened, compacted soils.

12.
Front Plant Sci ; 11: 955, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670341

RESUMEN

The concentration of CO2 in the atmosphere has increased over the past 200 years and is expected to continue rising in the next 50 years at a rate of 3 ppm·year-1. This increase has led to a decrease in seawater pH that has changed inorganic carbon chemical speciation, increasing the dissolved HC O 3 - . Posidonia oceanica is a marine angiosperm that uses HC O 3 - as an inorganic carbon source for photosynthesis. An important side effect of the direct uptake of HC O 3 - is the diminution of cytosolic Cl- (Cl-c) in mesophyll leaf cells due to the efflux through anion channels and, probably, to intracellular compartmentalization. Since anion channels are also permeable to N O 3 - we hypothesize that high HC O 3 - , or even CO2, would also promote a decrease of cytosolic N O 3 - ( N O 3 - c ). In this work we have used N O 3 - - and Cl--selective microelectrodes for the continuous monitoring of the cytosolic concentration of both anions in P. oceanica leaf cells. Under light conditions, mesophyll leaf cells showed a N O 3 - c of 5.7 ± 0.2 mM, which rose up to 7.2 ± 0.6 mM after 30 min in the dark. The enrichment of natural seawater (NSW) with 3 mM NaHCO3 caused both a N O 3 - c decrease of 1 ± 0.04 mM and a Cl c - decrease of 3.5 ± 0.1 mM. The saturation of NSW with 1000 ppm CO2 also produced a diminution of the N O 3 - c , but lower (0.4 ± 0.07 mM). These results indicate that the rise of dissolved inorganic carbon ( HC O 3 - or CO2) in NSW would have an effect on the cytosolic anion homeostasis mechanisms in P. oceanica leaf cells. In the presence of 0.1 mM ethoxyzolamide, the plasma membrane-permeable carbonic anhydrase inhibitor, the CO2-induced cytosolic N O 3 - diminution was much lower (0.1 ± 0.08 mM), pointing to HC O 3 - as the inorganic carbon species that causes the cytosolic N O 3 - leak. The incubation of P. oceanica leaf pieces in 3 mM HC O 3 - -enriched NSW triggered a short-term external N O 3 - net concentration increase consistent with the N O 3 - c leak. As a consequence, the cytosolic N O 3 - diminution induced in high inorganic carbon could result in both the decrease of metabolic N flux and the concomitant biomass N impoverishment in P. oceanica and, probably, in other aquatic plants.

14.
Ann Bot ; 124(7): 1227-1242, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31904093

RESUMEN

BACKGROUND AND AIMS: Extracellular ATP governs a range of plant functions, including cell viability, adaptation and cross-kingdom interactions. Key functions of extracellular ATP in leaves and roots may involve an increase in cytosolic free calcium as a second messenger ('calcium signature'). The main aim here was to determine to what extent leaf and root calcium responses require the DORN1/P2K1 extracellular ATP receptor in Arabidopsis thaliana. The second aim was to test whether extracellular ATP can generate a calcium wave in the root. METHODS: Leaf and root responses to extracellular ATP were reviewed for their possible links to calcium signalling and DORN1/P2K1. Leaves and roots of wild type and dorn1 plants were tested for cytosolic calcium increase in response to ATP, using aequorin. The spatial abundance of DORN1/P2K1 in the root was estimated using green fluorescent protein. Wild type roots expressing GCaMP3 were used to determine the spatial variation of cytosolic calcium increase in response to extracellular ATP. KEY RESULTS: Leaf and root ATP-induced calcium signatures differed markedly. The leaf signature was only partially dependent on DORN1/P2K1, while the root signature was fully dependent. The distribution of DORN1/P2K1 in the root supports a key role in the generation of the apical calcium signature. Root apical and sub-apical calcium signatures may operate independently of each other but an apical calcium increase can drive a sub-apical increase, consistent with a calcium wave. CONCLUSION: DORN1 could underpin several calcium-related responses but it may not be the only receptor for extracellular ATP in Arabidopsis. The root has the capacity for a calcium wave, triggered by extracellular ATP at the apex.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfato , Calcio , Señalización del Calcio , Raíces de Plantas
15.
Front Plant Sci ; 10: 1064, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31552068

RESUMEN

Adenosine 5'-triphosphate (ATP) is an important extracellular signaling agent, operating in growth regulation, stomatal conductance, and wound response. With the first receptor for extracellular ATP now identified in plants (P2K1/DORN1) and a plasma membrane NADPH oxidase revealed as its target, the search continues for the components of the signaling cascades they command. The Arabidopsis root elongation zone epidermal plasma membrane has recently been shown to contain cation transport pathways (channel conductances) that operate downstream of P2K1 and could contribute to extracellular ATP (eATP) signaling. Here, patch clamp electrophysiology has been used to delineate two further conductances from the root elongation zone epidermal plasma membrane that respond to eATP, including one that would permit chloride transport. This perspective addresses how these conductances compare to those previously characterized in roots and how they might operate together to enable early events in eATP signaling, including elevation of cytosolic-free calcium as a second messenger. The role of the reactive oxygen species (ROS) that could arise from eATP's activation of NADPH oxidases is considered in a qualitative model that also considers the regulation of plasma membrane potential by the concerted action of the various cation and anion conductances. The molecular identities of the channel conductances in eATP signaling remain enigmatic but may yet be found in the multigene families of glutamate receptor-like channels, cyclic nucleotide-gated channels, annexins, and aluminum-activated malate transporters.

16.
Plant Signal Behav ; 14(9): 1640563, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31304865

RESUMEN

Plants use changes in cytosolic free Ca2+ ("signatures") to encode information from the specific signals generated in development, immunity and stress perception. Phosphate availability has a significant impact on the Arabidopsis thaliana root calcium signatures generated in response to abiotic stress stimuli and exogenous purine nucleotides. In the case of the response to exogenous ATP, the effect of low phosphate availability is linked to abnormal iron and reactive oxygen species accumulation with iron deprivation's restoring normal signature dynamics. Here, the effect of iron deprivation with normal phosphate availability has been examined. Iron deprivation significantly alters the root calcium signature evoked by exogenous ATP and may link to levels of reactive oxygen species and callose deposition.


Asunto(s)
Adenosina Trifosfato/farmacología , Arabidopsis/metabolismo , Señalización del Calcio , Calcio/metabolismo , Hierro/farmacología , Raíces de Plantas/metabolismo , Arabidopsis/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Fluorescencia , Raíces de Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
17.
Plant J ; 98(4): 607-621, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659713

RESUMEN

Roots form highly complex systems varying in growth direction and branching pattern to forage for nutrients efficiently. Here mutations in the KAI2 (KARRIKIN INSENSITIVE) α/ß-fold hydrolase and the MAX2 (MORE AXILLARY GROWTH 2) F-box leucine-rich protein, which together perceive karrikins (smoke-derived butenolides), caused alteration in root skewing in Arabidopsis thaliana. This phenotype was independent of endogenous strigolactones perception by the D14 α/ß-fold hydrolase and MAX2. Thus, KAI2/MAX2 effect on root growth may be through the perception of endogenous KAI2-ligands (KLs), which have yet to be identified. Upon perception of a ligand, a KAI2/MAX2 complex is formed together with additional target proteins before ubiquitination and degradation through the 26S proteasome. Using a genetic approach, we show that SMAX1 (SUPPRESSOR OF MAX2-1)/SMXL2 and SMXL6,7,8 (SUPPRESSOR OF MAX2-1-LIKE) are also likely degradation targets for the KAI2/MAX2 complex in the context of root skewing. In A. thaliana therefore, KAI2 and MAX2 act to limit root skewing, while kai2's gravitropic and mechano-sensing responses remained largely unaffected. Many proteins are involved in root skewing, and we investigated the link between MAX2 and two members of the SKS/SKU family. Though KLs are yet to be identified in plants, our data support the hypothesis that they are present and can affect root skewing.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Furanos/metabolismo , Lactonas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Piranos/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Hidrolasas/genética , Hidrolasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Transcriptoma
18.
Plant Physiol ; 179(4): 1754-1767, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30696750

RESUMEN

Phosphate (Pi) deficiency strongly limits plant growth, and plant roots foraging the soil for nutrients need to adapt to optimize Pi uptake. Ca2+ is known to signal in root development and adaptation but has to be tightly controlled, as it is highly toxic to Pi metabolism. Under Pi starvation and the resulting decreased cellular Pi pool, the use of cytosolic free Ca2+ ([Ca2+]cyt) as a signal transducer may therefore have to be altered. Employing aequorin-expressing Arabidopsis (Arabidopsis thaliana), we show that Pi starvation, but not nitrogen starvation, strongly dampens the [Ca2+]cyt increases evoked by mechanical, salt, osmotic, and oxidative stress as well as by extracellular nucleotides. The altered root [Ca2+]cyt response to extracellular ATP manifests during seedling development under chronic Pi deprivation but can be reversed by Pi resupply. Employing ratiometric imaging, we delineate that Pi-starved roots have a normal response to extracellular ATP at the apex but show a strongly dampened [Ca2+]cyt response in distal parts of the root tip, correlating with high reactive oxygen species levels induced by Pi starvation. Excluding iron, as well as Pi, rescues this altered [Ca2+]cyt response and restores reactive oxygen species levels to those seen under nutrient-replete conditions. These results indicate that, while Pi availability does not seem to be signaled through [Ca2+]cyt, Pi starvation strongly affects stress-induced [Ca2+]cyt signatures. These data reveal how plants can integrate nutritional and environmental cues, adding another layer of complexity to the use of Ca2+ as a signal transducer.


Asunto(s)
Arabidopsis/metabolismo , Calcio/metabolismo , Fosfatos/metabolismo , Estrés Fisiológico , Proteínas de Arabidopsis/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
19.
Nat Plants ; 4(9): 690-698, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127410

RESUMEN

In the last decade, the view of circadian oscillators has expanded from transcriptional feedback to incorporate post-transcriptional, post-translational, metabolic processes and ionic signalling. In plants and animals, there are circadian oscillations in the concentration of cytosolic free Ca2+ ([Ca2+]cyt), though their purpose has not been fully characterized. We investigated whether circadian oscillations of [Ca2+]cyt regulate the circadian oscillator of Arabidopsis thaliana. We report that in Arabidopsis, [Ca2+]cyt circadian oscillations can regulate circadian clock function through the Ca2+-dependent action of CALMODULIN-LIKE24 (CML24). Genetic analyses demonstrate a linkage between CML24 and the circadian oscillator, through pathways involving the circadian oscillator gene TIMING OF CAB2 EXPRESSION1 (TOC1).


Asunto(s)
Arabidopsis/fisiología , Calcio/metabolismo , Relojes Circadianos/fisiología , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/fisiología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA