Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 93(32): 11108-11115, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34348022

RESUMEN

Studies of the metal content of metalloproteins in tissues from the human central nervous system (CNS) can be compromised by preparative techniques which alter levels of, or interactions between, metals and the protein of interest within a complex mixture. We developed a methodological workflow combining size exclusion chromatography, native isoelectric focusing, and either proton or synchrotron X-ray fluorescence within electrophoresis gels to analyze the endogenous metal content of copper-zinc superoxide dismutase (SOD1) purified from minimal amounts (<20 mg) of post-mortem human brain and spinal cord tissue. Abnormal metallation and aggregation of SOD1 are suspected to play a role in amyotrophic lateral sclerosis and Parkinson's disease, but data describing SOD1 metal occupancy in human tissues have not previously been reported. Validating our novel approach, we demonstrated step-by-step metal preservation, preserved SOD1 activity, and substantial enrichment of SOD1 protein versus confounding metalloproteins. We analyzed tissues from nine healthy individuals and five CNS regions (occipital cortex, substantia nigra, locus coeruleus, dorsal spinal cord, and ventral spinal cord). We found that Cu and Zn were bound to SOD1 in a ratio of 1.12 ± 0.28, a ratio very close to the expected value of 1. Our methodological workflow can be applied to the study of endogenous native SOD1 in a pathological context and adapted to a range of metalloproteins from human tissues and other sources.


Asunto(s)
Esclerosis Amiotrófica Lateral , Zinc , Sistema Nervioso Central , Cobre , Humanos , Mutación , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Flujo de Trabajo
2.
Acta Neuropathol ; 134(1): 113-127, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28527045

RESUMEN

Neuronal loss in numerous neurodegenerative disorders has been linked to protein aggregation and oxidative stress. Emerging data regarding overlapping proteinopathy in traditionally distinct neurodegenerative diseases suggest that disease-modifying treatments targeting these pathological features may exhibit efficacy across multiple disorders. Here, we describe proteinopathy distinct from classic synucleinopathy, predominantly comprised of the anti-oxidant enzyme superoxide dismutase-1 (SOD1), in the Parkinson's disease brain. Significant expression of this pathology closely reflected the regional pattern of neuronal loss. The protein composition and non-amyloid macrostructure of these novel aggregates closely resembles that of neurotoxic SOD1 deposits in SOD1-associated familial amyotrophic lateral sclerosis (fALS). Consistent with the hypothesis that deposition of protein aggregates in neurodegenerative disorders reflects upstream dysfunction, we demonstrated that SOD1 in the Parkinson's disease brain exhibits evidence of misfolding and metal deficiency, similar to that seen in mutant SOD1 in fALS. Our data suggest common mechanisms of toxic SOD1 aggregation in both disorders and a potential role for SOD1 dysfunction in neuronal loss in the Parkinson's disease brain. This shared restricted proteinopathy highlights the potential translation of therapeutic approaches targeting SOD1 toxicity, already in clinical trials for ALS, into disease-modifying treatments for Parkinson's disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Encéfalo/patología , Enfermedad de Parkinson/patología , Superóxido Dismutasa-1/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Esclerosis Amiotrófica Lateral/enzimología , Encéfalo/enzimología , Recuento de Células , Femenino , Humanos , Immunoblotting , Inmunohistoquímica , Cuerpos de Lewy/enzimología , Cuerpos de Lewy/patología , Masculino , Microscopía Fluorescente , Persona de Mediana Edad , Neuronas/enzimología , Neuronas/patología , Enfermedad de Parkinson/enzimología , Agregación Patológica de Proteínas/enzimología , Agregación Patológica de Proteínas/patología , Pliegue de Proteína , Médula Espinal/enzimología , Médula Espinal/patología
3.
Clin Sci (Lond) ; 130(8): 565-74, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26957644

RESUMEN

Copper is a biometal essential for normal brain development and function, thus copper deficiency or excess results in central nervous system disease. Well-characterized disorders of disrupted copper homoeostasis with neuronal degeneration include Menkes disease and Wilson's disease but a large body of evidence also implicates disrupted copper pathways in other neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Huntington's disease and prion diseases. In this short review we critically evaluate the data regarding changes in systemic and brain copper levels in Parkinson's disease, where alterations in brain copper are associated with regional neuronal cell death and disease pathology. We review copper regulating mechanisms in the human brain and the effects of dysfunction within these systems. We then examine the evidence for a role for copper in pathogenic processes in Parkinson's disease and consider reports of diverse copper-modulating strategies in in vitro and in vivo models of this disorder. Copper-modulating therapies are currently advancing through clinical trials for Alzheimer's and Huntington's disease and may also hold promise as disease modifying agents in Parkinson's disease.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Encéfalo/efectos de los fármacos , Cobre/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Homeostasis , Humanos , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , alfa-Sinucleína/metabolismo
4.
Anal Chem ; 87(13): 6639-45, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26020362

RESUMEN

Redox-active metals in the brain mediate numerous biochemical processes and are also implicated in a number of neurodegenerative diseases. A number of different approaches are available for quantitatively measuring the spatial distribution of biometals at an image resolution approaching the subcellular level. Measured biometal levels obtained using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS; spatial resolution 15 µm × 15 µm) were within the range of those obtained using X-ray fluorescence microscopy (XFM; spatial resolution 2 µm × 7 µm) and regional changes in metal concentration across discrete brain regions were replicated to the same degree. Both techniques are well suited to profiling changes in regional biometal distribution between healthy and diseased brain tissues, but absolute quantitation of metal levels varied significantly between methods, depending on the metal of interest. Where all possible variables affect metal levels, independent of a treatment/phenotype are controlled, either method is suitable for examining differences between experimental groups, though, as with any method for imaging post mortem brain tissue, care should be taken when interpreting the total metal levels with regard to physiological concentrations.


Asunto(s)
Espectrometría de Masas/métodos , Metales/análisis , Microscopía Fluorescente/métodos , Sistema Nervioso/química , Animales , Rayos Láser , Ratones , Ratones Endogámicos C57BL
5.
Neurobiol Aging ; 35(4): 858-66, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24176624

RESUMEN

Synchrotron-based x-ray fluorescence microscopy, immunofluorescence, and Western blotting were used to investigate changes in copper (Cu) and Cu-associated pathways in the vulnerable substantia nigra (SN) and locus coeruleus (LC) and in nondegenerating brain regions in cases of Parkinson's disease (PD) and appropriate healthy and disease controls. In PD and incidental Lewy body disease, levels of Cu and Cu transporter protein 1, were significantly reduced in surviving neurons in the SN and LC. Specific activity of the cuproprotein superoxide dismutase 1 was unchanged in the SN in PD but was enhanced in the parkinsonian anterior cingulate cortex, a region with α-synuclein pathology, normal Cu, and limited cell loss. These data suggest that regions affected by α-synuclein pathology may display enhanced vulnerability and cell loss if Cu-dependent protective mechanisms are compromised. Additional investigation of copper pathology in PD may identify novel targets for the development of protective therapies for this disorder.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Locus Coeruleus/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Transportador de Cobre 1 , Giro del Cíngulo/enzimología , Humanos , Locus Coeruleus/citología , Terapia Molecular Dirigida , Neuronas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Sustancia Negra/citología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , alfa-Sinucleína
6.
Metallomics ; 5(1): 43-51, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23076575

RESUMEN

Disturbances in brain copper result in rare and severe neurological disorders and may play a role in the pathogenesis and progression of multiple neurodegenerative diseases. Our current understanding of mammalian brain copper transport is based on model systems outside the central nervous system and no data are available regarding copper transport systems in the human brain. To address this deficit, we quantified regional copper concentrations and examined the distribution and cellular localization of the copper transport proteins Copper transporter 1, Atox1, ATP7A, and ATP7B in multiple regions of the human brain using inductively coupled plasma-mass spectrometry, Western blot and immunohistochemistry. We identified significant relationships between copper transporter levels and brain copper concentrations, supporting a role for these proteins in copper transport in the human brain. Interestingly, the substantia nigra contained twice as much copper than that in other brain regions, suggesting an important role for copper in this brain region. Furthermore, ATP7A levels were significantly greater in the cerebellum, compared with other brain regions, supporting an important role for ATP7A in cerebellar neuronal health. This study provides novel data regarding copper regulation in the human brain, critical to understand the mechanisms by which brain copper levels can be altered, leading to neurological disease.


Asunto(s)
Adenosina Trifosfatasas/análisis , Química Encefálica , Proteínas de Transporte de Catión/análisis , Cobre/análisis , Metalochaperonas/análisis , Western Blotting , Proteínas Transportadoras de Cobre , Transportador de Cobre 1 , ATPasas Transportadoras de Cobre , Humanos , Inmunohistoquímica , Espectrometría de Masas , Chaperonas Moleculares
7.
J Gen Virol ; 83(Pt 4): 957-971, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11907346

RESUMEN

The nucleotide sequence of the Epiphyas postvittana nucleopolyhedrovirus (EppoMNPV) genome has been determined and analysed. The circular dsDNA genome contains 118584 bp, making it the smallest group I NPV sequenced to date. The genome has a G+C content of 40.7% and encodes 136 predicted open reading frames (ORFs), five homologous repeat regions and one unique repeat region. Of the genome, 92.9% encodes predicted ORFs and 2.2% is in repeat regions; the remaining 4.9% of the genome comprises nonrepeat intergenic regions. EppoMNPV encodes homologues of 126 Orgyia pseudotsugata MNPV (OpMNPV) ORFs and 120 Autographa californica MNPV ORFs, with average identities of 64.7 and 53.5%, respectively. Between the four sequenced group I NPVs, 117 ORFs are conserved, whereas 86 ORFs are conserved between all fully sequenced NPVs. A total of 62 ORFs is present in all baculoviruses sequenced to date, with EppoMNPV lacking a homologue of the superoxide dismutase (sod) gene, which has been found in all other fully sequenced baculoviruses. Whole genome phylogenetic analyses of the ten fully sequenced baculoviruses using the sequences of the 62 shared genes, gene content and gene order data sets confirmed that EppoMNPV clusters tightly with OpMNPV in the group I NPVs. The main variation between EppoMNPV and OpMNPV occurs where extra clusters of genes are present in OpMNPV, with sod occurring in one such cluster. EppoMNPV encodes one truncated baculovirus repeated ORF (bro) gene. The only repeated ORFs are the four iap genes. Eight, randomly distributed, unique ORFs were identified on EppoMNPV, none of which show any significant homology to genes in GenBank.


Asunto(s)
Genoma Viral , Mariposas Nocturnas/virología , Nucleopoliedrovirus/genética , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Nucleopoliedrovirus/clasificación , Sistemas de Lectura Abierta , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA