Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37047894

RESUMEN

Mental health is influenced by multiple complex and interacting genetic, psychological, social, and environmental factors. As such, developing state-of-the-art mental health knowledge requires collaboration across academic disciplines, including environmental science. To assess the current contribution of environmental science to this field, a scoping review of the literature on environmental influences on mental health (including conditions of cognitive development and decline) was conducted. The review protocol was developed in consultation with experts working across mental health and environmental science. The scoping review included 202 English-language papers, published between 2010 and 2020 (prior to the COVID-19 pandemic), on environmental themes that had not already been the subject of recent systematic reviews; 26 reviews on climate change, flooding, air pollution, and urban green space were additionally considered. Studies largely focused on populations in the USA, China, or Europe and involved limited environmental science input. Environmental science research methods are primarily focused on quantitative approaches utilising secondary datasets or field data. Mental health measurement was dominated by the use of self-report psychometric scales. Measures of environmental states or exposures were often lacking in specificity (e.g., limited to the presence or absence of an environmental state). Based on the scoping review findings and our synthesis of the recent reviews, a research agenda for environmental science's future contribution to mental health scholarship is set out. This includes recommendations to expand the geographical scope and broaden the representation of different environmental science areas, improve measurement of environmental exposure, prioritise experimental and longitudinal research designs, and giving greater consideration to variation between and within communities and the mediating pathways by which environment influences mental health. There is also considerable opportunity to increase interdisciplinarity within the field via the integration of conceptual models, the inclusion of mixed methods and qualitative approaches, as well as further consideration of the socio-political context and the environmental states that can help support good mental health. The findings were used to propose a conceptual model to parse contributions and connections between environmental science and mental health to inform future studies.


Asunto(s)
COVID-19 , Ciencia Ambiental , Humanos , Salud Mental , Pandemias , Exposición a Riesgos Ambientales
2.
Ambio ; 52(1): 1-14, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35849312

RESUMEN

The link between nature and human wellbeing is well established. However, few studies go beyond considering the visual and auditory underpinnings of this relationship, even though engaging with nature is a multisensory experience. While research linking smell to wellbeing exists, it focuses predominantly on smells as a source of nuisance/offence. Smells clearly have a prominent influence, but a significant knowledge gap remains in the nexus of nature, smell, and wellbeing. Here, we examine how smells experienced in woodlands contribute to wellbeing across four seasons. We show that smells are associated with multiple wellbeing domains, both positively and negatively. They are linked to memories, and specific ecological characteristics and processes over space/time. By making the link between the spatiotemporal variability in biodiversity and wellbeing explicit, we unearth a new line of enquiry. Overall, the multisensory experience must be considered by researchers, practitioners, policy-makers and planners looking to improve wellbeing through nature.


Asunto(s)
Bosques , Felicidad , Olfato , Humanos , Biodiversidad
3.
Nature ; 612(7941): 707-713, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517596

RESUMEN

Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.


Asunto(s)
Aves , Metabolismo Energético , Cadena Alimentaria , Agricultura Forestal , Bosques , Mamíferos , Clima Tropical , Animales , Biodiversidad , Biomasa , Aves/fisiología , Borneo , Mamíferos/fisiología , Aceite de Palma , Árboles/crecimiento & desarrollo , Ecología
4.
Bioscience ; 72(11): 1118-1130, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36325105

RESUMEN

Wallacea-the meeting point between the Asian and Australian fauna-is one of the world's largest centers of endemism. Twenty-three million years of complex geological history have given rise to a living laboratory for the study of evolution and biodiversity, highly vulnerable to anthropogenic pressures. In the present article, we review the historic and contemporary processes shaping Wallacea's biodiversity and explore ways to conserve its unique ecosystems. Although remoteness has spared many Wallacean islands from the severe overexploitation that characterizes many tropical regions, industrial-scale expansion of agriculture, mining, aquaculture and fisheries is damaging terrestrial and aquatic ecosystems, denuding endemics from communities, and threatening a long-term legacy of impoverished human populations. An impending biodiversity catastrophe demands collaborative actions to improve community-based management, minimize environmental impacts, monitor threatened species, and reduce wildlife trade. Securing a positive future for Wallacea's imperiled ecosystems requires a fundamental shift away from managing marine and terrestrial realms independently.

5.
Methods Ecol Evol ; 13(1): 68-76, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35873756

RESUMEN

Participatory approaches are widely used by researchers to gather data and insight about how the environment is perceived, valued and used. The participatory activities may be creating information as part of curiosity-driven blue-skies research or to inform policy/practise decision-making.The quality and usability of data derived from participatory approaches are heavily influenced by how activities are conducted. We share a set of features and processes that underpin the generation of high-quality data, based on our collective experience of developing and undertaking participatory activities with an environmental and conservation focus.We propose four general features: (a) Depth and breadth of engagement; (b) robustness of the approach; (c) allowing space for surprises; (d) usability across contexts. We also provide a practical toolbox of processes, and associated facilitation techniques, which can be employed to maximise participant engagement and generate quality data.The features and processes are a practical guide for project leaders/teams to consider in the context of their work, rather than a set of inflexible rules. They should be relevant regardless of the participatory methods used, or the research, policy or practice setting being addressed.

6.
Nat Commun ; 13(1): 3559, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729171

RESUMEN

Robotics and autonomous systems are reshaping the world, changing healthcare, food production and biodiversity management. While they will play a fundamental role in delivering the UN Sustainable Development Goals, associated opportunities and threats are yet to be considered systematically. We report on a horizon scan evaluating robotics and autonomous systems impact on all Sustainable Development Goals, involving 102 experts from around the world. Robotics and autonomous systems are likely to transform how the Sustainable Development Goals are achieved, through replacing and supporting human activities, fostering innovation, enhancing remote access and improving monitoring. Emerging threats relate to reinforcing inequalities, exacerbating environmental change, diverting resources from tried-and-tested solutions and reducing freedom and privacy through inadequate governance. Although predicting future impacts of robotics and autonomous systems on the Sustainable Development Goals is difficult, thoroughly examining technological developments early is essential to prevent unintended detrimental consequences. Additionally, robotics and autonomous systems should be considered explicitly when developing future iterations of the Sustainable Development Goals to avoid reversing progress or exacerbating inequalities.


Asunto(s)
Robótica , Desarrollo Sostenible , Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Humanos
7.
Environ Res ; 212(Pt A): 113154, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35341752

RESUMEN

Most of the global population are urban, with inhabitants exposed to raised levels of pollution. Pollutants negatively impact human wellbeing, and can alter the structure and diversity of ecosystems. Contrastingly, urban biodiversity can positively contribute to human wellbeing. We know little, however, about whether the negative impacts of pollution on wellbeing could be lessened for householders living on more biodiverse streets, as the complex interlinkages between pollution, biodiversity and wellbeing have rarely been examined. Here, we used structural equation modelling to simultaneously test whether biodiversity (actual and perceived) mediates the relationship between traffic-related pollution (noise, dB; nitrogen dioxide, NO2) or air pollution (PM2.5) and wellbeing (mental wellbeing, happiness). In summer 2019, we conducted questionnaires and biodiversity surveys, and collected noise and air pollution data, from households (n = 282) across the streetscapes of Leeds, UK. Biodiversity (actual or perceived) showed no mediating effects. However, increased flowering plant richness was positively associated with mental wellbeing. Traffic-related pollution negatively affected pollinator and flowering plant richness, but not wellbeing. This could be because householders are not exposed to high levels of noise or NO2 because they do not maintain front gardens on noisier streets. There was no measurable effect of air pollution on biodiversity or wellbeing. These findings shed light on the complex mechanisms through which biodiversity could improve human wellbeing. Enhancing the diversity of plant species in streetscapes would have a positive effect on wellbeing, further emphasising the important role that biodiverse urban streetscapes play in improving the liveability of cities.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Biodiversidad , Ecosistema , Exposición a Riesgos Ambientales , Humanos , Dióxido de Nitrógeno/análisis , Material Particulado/análisis
8.
Sci Total Environ ; 793: 148653, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34328965

RESUMEN

Accelerating rates of urbanisation are contributing to biodiversity declines worldwide. However, urban green (e.g. parks) and blue spaces (e.g. coast) provide important habitat for species. Emerging evidence also shows that green and blue spaces can benefit human psychological wellbeing, although few studies originate from the Global South and it is unclear whether more biodiverse spaces offer greater wellbeing gains. We examine how bird diversity (abundance, species richness, Shannon diversity, and community composition) in green and coastal blue space in Georgetown, Guyana, is associated with people's wellbeing (positive and negative affect, anxiety) in situ, using point counts and questionnaires. Bird community composition differed between green and coastal sites, and diversity was significantly higher in green sites. Positive affect and anxiety did not differ between green and coastal sites, but negative affect was higher in coastal sites. Mixed-effect models showed no associations between biodiversity and wellbeing, implying other features are contributing to people's positive wellbeing. Despite no association between biodiversity and wellbeing, both green and coastal blue sites are important for wellbeing and supporting different bird communities. City planning authorities and public health professionals should ensure these social and environmental needs are met in developing cities in the Global South.


Asunto(s)
Biodiversidad , Aves , Animales , Ciudades , Ecosistema , Humanos , Urbanización
9.
Nat Ecol Evol ; 5(2): 219-230, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33398104

RESUMEN

Technology is transforming societies worldwide. A major innovation is the emergence of robotics and autonomous systems (RAS), which have the potential to revolutionize cities for both people and nature. Nonetheless, the opportunities and challenges associated with RAS for urban ecosystems have yet to be considered systematically. Here, we report the findings of an online horizon scan involving 170 expert participants from 35 countries. We conclude that RAS are likely to transform land use, transport systems and human-nature interactions. The prioritized opportunities were primarily centred on the deployment of RAS for the monitoring and management of biodiversity and ecosystems. Fewer challenges were prioritized. Those that were emphasized concerns surrounding waste from unrecovered RAS, and the quality and interpretation of RAS-collected data. Although the future impacts of RAS for urban ecosystems are difficult to predict, examining potentially important developments early is essential if we are to avoid detrimental consequences but fully realize the benefits.


Asunto(s)
Biodiversidad , Ecosistema , Ciudades , Predicción , Humanos
10.
Ecosyst Serv ; 46: 101221, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33312854

RESUMEN

Since the Millennium Ecosystem Assessment was published, a plethora of ecosystem service frameworks have been developed to conceptualise the links between the natural environment and society. The intended geographic scales of application, the policy/practice context, and the scientific disciplines involved have driven variations in how the frameworks are constructed. However, the frameworks are homogenous in that they have been created predominately based on expert opinions and views of how ecosystem services are structured. Here, we use the Common International Classification of Ecosystem Services (CICES) to examine the extent to which frameworks capture people's values for British woodlands. Our findings reveal several disparities between how experts and the public conceptualise ecosystem services. The considerable refinement and specificity provided by CICES does not align with public values (e.g. some provisioning, and regulation and maintenance, services), which tend to be more generalised. We also demonstrate differences in values explained by social characteristics (e.g. ethnicity) that need to be accounted for in decision-making processes. Moving forwards, we need to consider how society views the services derived from nature and reflect this in frameworks to ensure ecosystem service approaches are effective, transparent and widely supported.

11.
Proc Natl Acad Sci U S A ; 117(42): 26254-26262, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32989143

RESUMEN

Tropical forest ecosystems are facing unprecedented levels of degradation, severely compromising habitat suitability for wildlife. Despite the fundamental role biodiversity plays in forest regeneration, identifying and prioritizing degraded forests for restoration or conservation, based on their wildlife value, remains a significant challenge. Efforts to characterize habitat selection are also weakened by simple classifications of human-modified tropical forests as intact vs. degraded, which ignore the influence that three-dimensional (3D) forest structure may have on species distributions. Here, we develop a framework to identify conservation and restoration opportunities across logged forests in Borneo. We couple high-resolution airborne light detection and ranging (LiDAR) and camera trap data to characterize the response of a tropical mammal community to changes in 3D forest structure across a degradation gradient. Mammals were most responsive to covariates that accounted explicitly for the vertical and horizontal characteristics of the forest and actively selected structurally complex environments comprising tall canopies, increased plant area index throughout the vertical column, and the availability of a greater diversity of niches. We show that mammals are sensitive to structural simplification through disturbance, emphasizing the importance of maintaining and enhancing structurally intact forests. By calculating occurrence thresholds of species in response to forest structural change, we identify areas of degraded forest that would provide maximum benefit for multiple high-conservation value species if restored. The study demonstrates the advantages of using LiDAR to map forest structure, rather than relying on overly simplistic classifications of human-modified tropical forests, for prioritizing regions for restoration.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Restauración y Remediación Ambiental/métodos , Animales , Biodiversidad , Borneo , Ecosistema , Bosques , Mamíferos , Modelos Teóricos , Plantas , Clima Tropical
12.
Biol Conserv ; 246: 108587, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32508347

RESUMEN

Participation in conservation citizen science projects is growing rapidly and approaches to project design are diversifying. There has been a recent shift towards projects characterised by contributors collecting data in isolation and submitting findings online, with little training or opportunities for direct social interaction with other citizen scientists. While research is emerging on developing citizen science projects by optimising technological modalities, little consideration has been given to understanding what motivates individuals to voluntarily contribute data. Here, we use the Volunteer Functions Inventory, combined with open-ended questions, to demonstrate that the two strongest motivations underpinning participation, for both individuals who contribute data systematically (regularly; n = 177) and opportunistically (ad hoc basis; n = 218), are 'Values' and 'Understanding'. People take part in such projects because they have an intrinsic value for the environment and want to support research efforts (representing 'Values'), as well as wanting to learn and gain knowledge (signifying 'Understanding'). Unlike more traditional citizen science projects that involve specific training and considerable time investments, contributors to these newer types of project are not motivated by the potential to develop their career or opportunities for social interaction. The person-level characteristics of contributors considered in this study did not reliably forecast levels of motivation, suggesting that predicting high levels of motivation is inherently more complex than is often speculated. We recommend avenues for future research that may further enhance our understanding of contributor motivations and the characteristics that may underpin levels of motivation.

14.
Artículo en Inglés | MEDLINE | ID: mdl-31718035

RESUMEN

Nature-based health interventions (NBIs) for the treatment of poor mental health are becoming increasingly common, yet evidence to support their effectiveness is lacking. We conduct a pilot study of a six-week intervention, aiming to engage individuals with wetland nature for the treatment of anxiety and/or depression. We employed a mixed methods design, using questionnaires, focus groups and semi-structured interviews to evaluate the intervention from the perspective of participants (n = 16) and healthcare professionals (n = 2). Results demonstrate significant improvements in mental health across a range of indicators, including mental wellbeing (Warwick and Edinburgh Mental Wellbeing Scale), anxiety (Generalised Anxiety Disorder-7), stress (Perceived Stress Scale) and emotional wellbeing (Positive and Negative Affect Schedule). Participants and healthcare professionals cited additional outcomes including improved physical health and reduced social isolation. The wetland site provided a sense of escape from participants' everyday environments, facilitating relaxation and reductions in stress. Wetland staff knowledge of the natural world, transportation and group organisation also played a considerable role in the intervention's success. These aspects should be considered in future and existing NBIs to maximise benefits to participants. We propose NBIs based in wetlands are an effective therapy option for individuals diagnosed with anxiety and/or depression.


Asunto(s)
Ansiedad/terapia , Depresión/terapia , Humedales , Adulto , Femenino , Grupos Focales , Humanos , Masculino , Persona de Mediana Edad , Proyectos Piloto , Encuestas y Cuestionarios
15.
Nat Commun ; 10(1): 4590, 2019 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-31611554

RESUMEN

Intact forests provide diverse and irreplaceable ecosystem services that are critical to human well-being, such as carbon storage to mitigate climate change. However, the ecosystem functions that underpin these services are highly dependent on the woody vegetation-animal interactions occurring within forests. While vertebrate defaunation is of growing policy concern, the effects of vertebrate loss on natural forest regeneration have yet to be quantified globally. Here we conduct a meta-analysis to assess the direction and magnitude of defaunation impacts on forests. We demonstrate that real-world defaunation caused by hunting and habitat fragmentation leads to reduced forest regeneration, although manipulation experiments provide contrasting findings. The extirpation of primates and birds cause the greatest declines in forest regeneration, emphasising their key role in maintaining carbon stores, and the need for national and international climate change and conservation strategies to protect forests from defaunation fronts as well as deforestation fronts.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales/métodos , Ecosistema , Bosques , Árboles/fisiología , Animales , Biomasa , Aves/fisiología , Carbono/metabolismo , Cambio Climático , Humanos , Modelos Biológicos , Primates/fisiología , Árboles/clasificación , Vertebrados/fisiología
16.
J Appl Ecol ; 55(3): 1393-1405, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29780172

RESUMEN

Habitat loss, fragmentation and degradation are key threats to the long-term persistence of carnivores, which are also susceptible to direct persecution by people. Integrating natural and social science methods to examine how habitat configuration/quality and human-predator relations may interact in space and time to effect carnivore populations within human-dominated landscapes will help prioritise conservation investment and action effectively.We propose a socioecological modelling framework to evaluate drivers of carnivore decline in landscapes where predators and people coexist. By collecting social and ecological data at the same spatial scale, candidate models can be used to quantify and tease apart the relative importance of different threats.We apply our methodological framework to an empirical case study, the threatened güiña (Leopardus guigna) in the temperate forest ecoregion of southern Chile, to illustrate its use. Existing literature suggests that the species is declining due to habitat loss, fragmentation and persecution in response to livestock predation. Data used in modelling were derived from four seasons of camera-trap surveys, remote-sensed images and household questionnaires.Occupancy dynamics were explained by habitat configuration/quality covariates rather than by human-predator relations. Güiñas can tolerate a high degree of habitat loss (>80% within a home range). They are primarily impacted by fragmentation and land subdivision (larger farms being divided into smaller ones). Ten per cent of surveyed farmers (N = 233) reported illegally killing the species over the past decade. Synthesis and applications. By integrating ecological and social data, collected at the same spatial scale, within a single modelling framework, our study demonstrates the value of an interdisciplinary approach to assessing the potential threats to a carnivore. It has allowed us to tease apart effectively the relative importance of different potential extinction pressures for the güiña (Leopardus guigna), make informed conservation recommendations and prioritise where future interventions should be targeted. We have identified that human-dominated landscapes with large intensive farms can be of conservation value, as long as an appropriate network of habitat patches is maintained within the matrix. Conservation efforts to secure the long-term persistence of the species should focus on reducing habitat fragmentation rather than human persecution.

17.
Ecol Evol ; 6(7): 1942-53, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27099705

RESUMEN

Urbanization is one of the major environmental challenges facing the world today. One of its particularly pressing effects is alterations to local and regional climate through, for example, the Urban Heat Island. Such changes in conditions are likely to have an impact on the phenology of urban vegetation, which will have knock-on implications for the role that urban green infrastructure can play in delivering multiple ecosystem services. Here, in a human-dominated region, we undertake an explicit comparison of vegetation phenology between urban and rural zones. Using satellite-derived MODIS-EVI data from the first decade of the 20th century, we extract metrics of vegetation phenology (date of start of growing season, date of end of growing season, and length of season) for Britain's 15 largest cities and their rural surrounds. On average, urban areas experienced a growing season 8.8 days longer than surrounding rural zones. As would be expected, there was a significant decline in growing season length with latitude (by 3.4 and 2.4 days/degree latitude in rural and urban areas respectively). Although there is considerable variability in how phenology in urban and rural areas differs across our study cities, we found no evidence that built urban form influences the start, end, or length of the growing season. However, the difference in the length of the growing season between rural and urban areas was significantly negatively associated with the mean disposable household income for a city. Vegetation in urban areas deliver many ecosystem services such as temperature mitigation, pollution removal, carbon uptake and storage, the provision of amenity value for humans and habitat for biodiversity. Given the rapid pace of urbanization and ongoing climate change, understanding how vegetation phenology will alter in the future is important if we wish to be able to manage urban greenspaces effectively.

18.
PLoS One ; 10(7): e0132803, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26162073

RESUMEN

There are insufficient resources available to manage the world's existing protected area portfolio effectively, so the most important sites should be prioritised in investment decision-making. Sophisticated conservation planning and assessment tools developed to identify locations for new protected areas can provide an evidence base for such prioritisations, yet decision-makers in many countries lack the institutional support and necessary capacity to use the associated software. As such, simple heuristic approaches such as species richness or number of threatened species are generally adopted to inform prioritisation decisions. However, their performance has never been tested. Using the reptile fauna of Madagascar's dry forests as a case study, we evaluate the performance of four site prioritisation protocols used to rank the conservation value of 22 established and candidate protected areas. We compare the results to a benchmark produced by the widely-used systematic conservation planning software Zonation. The four indices scored sites on the basis of: i) species richness; ii) an index based on species' Red List status; iii) irreplaceability (a key metric in systematic conservation planning); and, iv) a novel Conservation Value Index (CVI), which incorporates species-level information on endemism, representation in the protected area system, tolerance of habitat degradation and hunting/collection pressure. Rankings produced by the four protocols were positively correlated to the results of Zonation, particularly amongst high-scoring sites, but CVI and Irreplaceability performed better than Species Richness and the Red List Index. Given the technological capacity constraints experienced by decision-makers in the developing world, our findings suggest that heuristic metrics can represent a useful alternative to more sophisticated analyses, especially when they integrate species-specific information related to extinction risk. However, this can require access to, and understanding of, more complex species data.


Asunto(s)
Conservación de los Recursos Naturales/economía , Desecación , Bosques , Inversiones en Salud , Reptiles/fisiología , Animales , Geografía , Madagascar , Especificidad de la Especie
19.
J Appl Ecol ; 52(2): 379-388, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25954054

RESUMEN

Over 20% of the world's tropical forests have been selectively logged, and large expanses are allocated for future timber extraction. Reduced-impact logging (RIL) is being promoted as best practice forestry that increases sustainability and lowers CO2 emissions from logging, by reducing collateral damage associated with timber extraction. RIL is also expected to minimize the impacts of selective logging on biodiversity, although this is yet to be thoroughly tested.We undertake the most comprehensive study to date to investigate the biodiversity impacts of RIL across multiple taxonomic groups. We quantified birds, bats and large mammal assemblage structures, using a before-after control-impact (BACI) design across 20 sample sites over a 5-year period. Faunal surveys utilized point counts, mist nets and line transects and yielded >250 species. We examined assemblage responses to logging, as well as partitions of feeding guild and strata (understorey vs. canopy), and then tested for relationships with logging intensity to assess the primary determinants of community composition.Community analysis revealed little effect of RIL on overall assemblages, as structure and composition were similar before and after logging, and between logging and control sites. Variation in bird assemblages was explained by natural rates of change over time, and not logging intensity. However, when partitioned by feeding guild and strata, the frugivorous and canopy bird ensembles changed as a result of RIL, although the latter was also associated with change over time. Bats exhibited variable changes post-logging that were not related to logging, whereas large mammals showed no change at all.Indicator species analysis and correlations with logging intensities revealed that some species exhibited idiosyncratic responses to RIL, whilst abundance change of most others was associated with time.Synthesis and applications. Our study demonstrates the relatively benign effect of reduced-impact logging (RIL) on birds, bats and large mammals in a neotropical forest context, and therefore, we propose that forest managers should improve timber extraction techniques more widely. If RIL is extensively adopted, forestry concessions could represent sizeable and important additions to the global conservation estate - over 4 million km2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...