Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 11(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36497121

RESUMEN

CEP55 is a central regulator of late cytokinesis and is overexpressed in numerous cancers. Its post-translationally controlled recruitment to the midbody is crucial to the structural coordination of the abscission sequence. Our recent evidence that CEP55 contains two ubiquitin-binding domains was the first structural and functional link between ubiquitin signaling and ESCRT-mediated severing of the intercellular bridge. So far, high-content screens focusing on cytokinesis have used multinucleation as the endpoint readout. Here, we report an automated image-based detection method of intercellular bridges, which we applied to further our understanding of late cytokinetic signaling by performing an RNAi screen of ubiquitin ligases and deubiquitinases. A secondary validation confirmed four candidate genes, i.e., LNX2, NEURL, UCHL1 and RNF157, whose downregulation variably affects interconnected phenotypes related to CEP55 and its UBDs, as follows: decreased recruitment of CEP55 to the midbody, increased number of midbody remnants per cell, and increased frequency of intercellular bridges or multinucleation events. This brings into question the Notch-dependent or independent contributions of LNX2 and NEURL proteins to late cytokinesis. Similarly, the role of UCHL1 in autophagy could link its function with the fate of midbody remnants. Beyond the biological interest, this high-content screening approach could also be used to isolate anticancer drugs that act by impairing cytokinesis and CEP55 functions.


Asunto(s)
Proteínas Nucleares , Ubiquitina , Humanos , Ubiquitina/metabolismo , Proteínas Nucleares/metabolismo , Citocinesis/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Unión Proteica
2.
J Vis Exp ; (169)2021 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-33843937

RESUMEN

In vitro three-dimensional (3D) cell culture models, such as organoids and spheroids, are valuable tools for many applications including development and disease modeling, drug discovery, and regenerative medicine. To fully exploit these models, it is crucial to study them at cellular and subcellular levels. However, characterizing such in vitro 3D cell culture models can be technically challenging and requires specific expertise to perform effective analyses. Here, this paper provides detailed, robust, and complementary protocols to perform staining and subcellular resolution imaging of fixed in vitro 3D cell culture models ranging from 100 µm to several millimeters. These protocols are applicable to a wide variety of organoids and spheroids that differ in their cell-of-origin, morphology, and culture conditions. From 3D structure harvesting to image analysis, these protocols can be completed within 4-5 days. Briefly, 3D structures are collected, fixed, and can then be processed either through paraffin-embedding and histological/immunohistochemical staining, or directly immunolabeled and prepared for optical clearing and 3D reconstruction (200 µm depth) by confocal microscopy.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Imagenología Tridimensional/métodos , Organoides/diagnóstico por imagen , Esferoides Celulares/patología , Humanos
3.
Front Mol Biosci ; 7: 209, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32923457

RESUMEN

Mammalian cells display a broad spectrum of phenotypes, morphologies, and functional niches within biological systems. Our understanding of mechanisms at the individual cellular level, and how cells function in concert to form tissues, organs and systems, has been greatly facilitated by centuries of extensive work to classify and characterize cell types. Classic histological approaches are now complemented with advanced single-cell sequencing and spatial transcriptomics for cell identity studies. Emerging data suggests that additional levels of information should be considered, including the subcellular spatial distribution of molecules such as RNA and protein, when classifying cells. In this Perspective piece we describe the importance of integrating cell transcriptional state with tissue and subcellular spatial and temporal information for thorough characterization of cell type and state. We refer to recent studies making use of single cell RNA-seq and/or image-based cell characterization, which highlight a need for such in-depth characterization of cell populations. We also describe the advances required in experimental, imaging and analytical methods to address these questions. This Perspective concludes by framing this argument in the context of projects such as the Human Cell Atlas, and related fields of cancer research and developmental biology.

4.
iScience ; 20: 292-309, 2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31605944

RESUMEN

CEP55 regulates the final critical step of cell division termed cytokinetic abscission. We report herein that CEP55 contains two NEMO-like ubiquitin-binding domains (UBDs), NOA and ZF, which regulate its function in a different manner. In vitro studies of isolated domains showed that NOA adopts a dimeric coiled-coil structure, whereas ZF is based on a UBZ scaffold. Strikingly, CEP55 knocked-down HeLa cells reconstituted with the full-length CEP55 ubiquitin-binding defective mutants, containing structure-guided mutations either in NOACEP55 or ZFCEP55 domains, display severe abscission defects. In addition, the ZFCEP55 can be functionally replaced by some ZF-based UBDs belonging to the UBZ family, indicating that the essential function of ZFCEP55 is to act as ubiquitin receptor. Our work reveals an unexpected role of CEP55 in non-degradative ubiquitin signaling during cytokinetic abscission and provides a molecular basis as to how CEP55 mutations can lead to neurological disorders such as the MARCH syndrome.

5.
Front Immunol ; 9: 3184, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30761161

RESUMEN

Trained immunity describes the ability of innate immune cells to form immunological memories of prior encounters with pathogens. Recollection of these memories during a secondary encounter manifests a broadly enhanced inflammatory response characterized by the increased transcription of innate immune genes. Despite this phenomenon having been described over a decade ago, our understanding of the molecular mechanisms responsible for this phenotype is still incomplete. Here we present an overview of the molecular events that lead to training. For the first time, we highlight the mechanistic role of a novel class of long non-coding RNAs (lncRNAs) in the establishment and maintenance of discrete, long lasting epigenetic modifications that are causal to the trained immune response. This recent insight fills in significant gaps in our understanding of trained immunity and reveals novel ways to exploit trained immunity for therapeutic purposes.


Asunto(s)
Metabolismo Energético/genética , Epigénesis Genética , Inmunidad , Memoria Inmunológica , ARN Largo no Codificante/genética , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Epigenómica , Regulación de la Expresión Génica , Humanos , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
6.
Hum Mol Genet ; 25(8): 1559-73, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-27008887

RESUMEN

Despite recent progress in the genetic characterization of congenital muscle diseases, the genes responsible for a significant proportion of cases remain unknown. We analysed two branches of a large consanguineous family in which four patients presented with a severe new phenotype, clinically marked by neonatal-onset muscle weakness predominantly involving axial muscles, life-threatening respiratory failure, skin abnormalities and joint hyperlaxity without contractures. Muscle biopsies showed the unreported association of multi-minicores, caps and dystrophic lesions. Genome-wide linkage analysis followed by gene and exome sequencing in patients identified a homozygous nonsense mutation in TRIP4 encoding Activating Signal Cointegrator-1 (ASC-1), a poorly characterized transcription coactivator never associated with muscle or with human inherited disease. This mutation resulted in TRIP4 mRNA decay to around 10% of control levels and absence of detectable protein in patient cells. ASC-1 levels were higher in axial than in limb muscles in mouse, and increased during differentiation in C2C12 myogenic cells. Depletion of ASC-1 in cultured muscle cells from a patient and in Trip4 knocked-down C2C12 led to a significant reduction in myotube diameter ex vivo and in vitro, without changes in fusion index or markers of initial myogenic differentiation. This work reports the first TRIP4 mutation and defines a novel form of congenital muscle disease, expanding their histological, clinical and molecular spectrum. We establish the importance of ASC-1 in human skeletal muscle, identify transcriptional co-regulation as novel pathophysiological pathway, define ASC-1 as a regulator of late myogenic differentiation and suggest defects in myotube growth as a novel myopathic mechanism.


Asunto(s)
Codón sin Sentido , Desarrollo de Músculos , Enfermedades Musculares/congénito , Enfermedades Musculares/patología , Factores de Transcripción/genética , Adolescente , Animales , Diferenciación Celular , Línea Celular , Niño , Femenino , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Lactante , Masculino , Ratones , Músculo Esquelético/metabolismo , Enfermedades Musculares/genética , Linaje , Estabilidad del ARN , Análisis de Secuencia de ADN , Factores de Transcripción/metabolismo
7.
Am J Pathol ; 178(5): 2224-35, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21514436

RESUMEN

Dynamin 2 (DNM2) is a large GTPase implicated in many cellular functions, including cytoskeleton regulation and endocytosis. Although ubiquitously expressed, DNM2 was found mutated in two genetic disorders affecting different tissues: autosomal dominant centronuclear myopathy (ADCNM; skeletal muscle) and peripheral Charcot-Marie-Tooth neuropathy (peripheral nerve). To gain insight into the function of DNM2 in skeletal muscle and the pathological mechanisms leading to ADCNM, we introduced wild-type DNM2 (WT-DNM2) or R465W DNM2 (RW-DNM2), the most common ADCNM mutation, into adult wild-type mouse skeletal muscle by intramuscular adeno-associated virus injections. We detected altered localization of RW-DNM2 in mouse muscle. Several ADCNM features were present in RW-DNM2 mice: fiber atrophy, nuclear mislocalization, and altered mitochondrial staining, with a corresponding reduction in specific maximal muscle force. The sarcomere and triad structures were also altered. We report similar findings in muscle biopsy specimens from an ADCNM patient with the R465W mutation. In addition, expression of wild-type DNM2 induced some muscle defects, albeit to a lesser extent than RW-DNM2, suggesting that the R465W mutation has enhanced activity in vivo. In conclusion, we show the RW-DNM2 mutation acts in a dominant manner to cause ADCNM in adult muscle, and the disease arises from a primary defect in skeletal muscle rather than secondary to peripheral nerve involvement. Therefore, DNM2 plays important roles in the maintenance of adult muscle fibers.


Asunto(s)
Dinamina II/genética , Músculo Esquelético/patología , Mutación , Miopatías Estructurales Congénitas/genética , Animales , Western Blotting , Dinamina II/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Microscopía Electrónica de Transmisión , Debilidad Muscular/genética , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Músculo Esquelético/metabolismo , Miopatías Estructurales Congénitas/metabolismo , Miopatías Estructurales Congénitas/patología , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...