Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(3): 105647, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219818

RESUMEN

Pea phytoalexins (-)-maackiain and (+)-pisatin have opposite C6a/C11a configurations, but biosynthetically how this occurs is unknown. Pea dirigent-protein (DP) PsPTS2 generates 7,2'-dihydroxy-4',5'-methylenedioxyisoflav-3-ene (DMDIF), and stereoselectivity toward four possible 7,2'-dihydroxy-4',5'-methylenedioxyisoflavan-4-ol (DMDI) stereoisomers was investigated. Stereoisomer configurations were determined using NMR spectroscopy, electronic circular dichroism, and molecular orbital analyses. PsPTS2 efficiently converted cis-(3R,4R)-DMDI into DMDIF 20-fold faster than the trans-(3R,4S)-isomer. The 4R-configured substrate's near ß-axial OH orientation significantly enhanced its leaving group abilities in generating A-ring mono-quinone methide (QM), whereas 4S-isomer's α-equatorial-OH was a poorer leaving group. Docking simulations indicated that the 4R-configured ß-axial OH was closest to Asp51, whereas 4S-isomer's α-equatorial OH was further away. Neither cis-(3S,4S)- nor trans-(3S,4R)-DMDIs were substrates, even with the former having C3/C4 stereochemistry as in (+)-pisatin. PsPTS2 used cis-(3R,4R)-7,2'-dihydroxy-4'-methoxyisoflavan-4-ol [cis-(3R,4R)-DMI] and C3/C4 stereoisomers to give 2',7-dihydroxy-4'-methoxyisoflav-3-ene (DMIF). DP homologs may exist in licorice (Glycyrrhiza pallidiflora) and tree legume Bolusanthus speciosus, as DMIF occurs in both species. PsPTS1 utilized cis-(3R,4R)-DMDI to give (-)-maackiain 2200-fold more efficiently than with cis-(3R,4R)-DMI to give (-)-medicarpin. PsPTS1 also slowly converted trans-(3S,4R)-DMDI into (+)-maackiain, reflecting the better 4R configured OH leaving group. PsPTS2 and PsPTS1 provisionally provide the means to enable differing C6a and C11a configurations in (+)-pisatin and (-)-maackiain, via identical DP-engendered mono-QM bound intermediate generation, which PsPTS2 either re-aromatizes to give DMDIF or PsPTS1 intramolecularly cyclizes to afford (-)-maackiain. Substrate docking simulations using PsPTS2 and PsPTS1 indicate cis-(3R,4R)-DMDI binds in the anti-configuration in PsPTS2 to afford DMDIF, and the syn-configuration in PsPTS1 to give maackiain.


Asunto(s)
Pisum sativum , Proteínas de Plantas , Pterocarpanos , Pisum sativum/química , Pisum sativum/metabolismo , Pterocarpanos/química , Pterocarpanos/metabolismo , Estereoisomerismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Modelos Moleculares , Conformación Molecular
2.
Methods Enzymol ; 683: 101-150, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37087184

RESUMEN

Aquatic plant transition to land, and subsequent terrestrial plant species diversification, was accompanied by the emergence and massive elaboration of plant phenol chemo-diversity. Concomitantly, dirigent protein (DP) and dirigent-like protein subfamilies, derived from large multigene families, emerged and became extensively diversified. DP biochemical functions as gateway entry points into new and diverse plant phenol skeletal types then markedly expanded. DPs have at least eight non-uniformly distributed subfamilies, with different DP subfamily members of known biochemical/physiological function now implicated as gateway entries to lignan, lignin, aromatic diterpenoid, pterocarpan and isoflavene pathways. While some other DP subfamily members have jacalin domains, both these and indeed the majority of DPs throughout the plant kingdom await discovery of their biochemical roles. Methods and approaches were developed to discover DP biochemical function as gateway entry points to distinct plant phenol skeletal types in land plants. Various DP 3D X-ray structural determinations enabled structure-based comparative sequence analysis and modeling to understand similarities and differences among the different DP subfamilies. We consider that the core DP ß-barrel fold and associated characteristics are likely common to all DPs, with several residues conserved and nearly invariant. There is also considerable variation in residue composition and topography of the putative substrate binding pockets, as well as substantial differences in several loops, such as the ß1-ß2 loop. All DPs likely bind and stabilize quinone methide intermediates, while guiding distinctive regio- and/or stereo-chemical entry into Nature's chemo-diverse land plant phenol metabolic classes.


Asunto(s)
Fenoles , Plantas , Plantas/genética , Plantas/metabolismo , Fenoles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Filogenia
3.
G3 (Bethesda) ; 13(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36966434

RESUMEN

Red alder (Alnus rubra Bong.) is an ecologically significant and important fast-growing commercial tree species native to western coastal and riparian regions of North America, having highly desirable wood, pigment, and medicinal properties. We have sequenced the genome of a rapidly growing clone. The assembly is nearly complete, containing the full complement of expected genes. This supports our objectives of identifying and studying genes and pathways involved in nitrogen-fixing symbiosis and those related to secondary metabolites that underlie red alder's many interesting defense, pigmentation, and wood quality traits. We established that this clone is most likely diploid and identified a set of SNPs that will have utility in future breeding and selection endeavors, as well as in ongoing population studies. We have added a well-characterized genome to others from the order Fagales. In particular, it improves significantly upon the only other published alder genome sequence, that of Alnus glutinosa. Our work initiated a detailed comparative analysis of members of the order Fagales and established some similarities with previous reports in this clade, suggesting a biased retention of certain gene functions in the vestiges of an ancient genome duplication when compared with more recent tandem duplications.


Asunto(s)
Alnus , Alnus/metabolismo , Diploidia , Fitomejoramiento , Simbiosis , Árboles
4.
NPJ Microgravity ; 9(1): 21, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36941263

RESUMEN

Spaceflight presents a multifaceted environment for plants, combining the effects on growth of many stressors and factors including altered gravity, the influence of experiment hardware, and increased radiation exposure. To help understand the plant response to this complex suite of factors this study compared transcriptomic analysis of 15 Arabidopsis thaliana spaceflight experiments deposited in the National Aeronautics and Space Administration's GeneLab data repository. These data were reanalyzed for genes showing significant differential expression in spaceflight versus ground controls using a single common computational pipeline for either the microarray or the RNA-seq datasets. Such a standardized approach to analysis should greatly increase the robustness of comparisons made between datasets. This analysis was coupled with extensive cross-referencing to a curated matrix of metadata associated with these experiments. Our study reveals that factors such as analysis type (i.e., microarray versus RNA-seq) or environmental and hardware conditions have important confounding effects on comparisons seeking to define plant reactions to spaceflight. The metadata matrix allows selection of studies with high similarity scores, i.e., that share multiple elements of experimental design, such as plant age or flight hardware. Comparisons between these studies then helps reduce the complexity in drawing conclusions arising from comparisons made between experiments with very different designs.

5.
Analyst ; 146(24): 7670-7681, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34806721

RESUMEN

The discovery of dirigent proteins (DPs) and their functions in plant phenol biochemistry was made over two decades ago with Forsythia × intermedia. Stereo-selective, DP-guided, monolignol-derived radical coupling in vitro was then reported to afford the optically active lignan, (+)-pinoresinol from coniferyl alcohol, provided one-electron oxidase/oxidant capacity was present. It later became evident that DPs have several distinct sub-families, presumably with different functions. Some known DPs require other essential enzymes/proteins (e.g. oxidases) for their functions. However, the lack of a fully sequenced genome for Forsythia × intermedia made it difficult to profile other components co-purified with the (+)-pinoresinol forming DP. Herein, we used an integrated bottom-up, top-down, and native mass spectrometry (MS) approach to de novo sequence the extracted proteins via adaptation of our initial report of DP solubilization and purification. Using publicly available transcriptome and genomic data from closely related species, we identified 14 proteins that were putatively associated with either DP function or the cell wall. Although their co-occurrence after extraction and chromatographic separation is suggestive for potential protein-protein interactions, none were found to form stable protein complexes with DPs in native MS under the specific experimental conditions we have explored. Interestingly, two new DP homologs were found and they formed hetero-trimers. Molecular dynamics simulations suggested that similar hetero-trimers were possible between Arabidopsis DP homologs with comparable sequence similarities. Nevertheless, our integrated mass spectrometry method development helped prepare for future investigations directed to the discovery of novel proteins and protein-protein interactions. These advantages can be highly beneficial for plant and microbial research where fully sequenced genomes may not be readily available.


Asunto(s)
Arabidopsis , Forsythia , Genoma , Humanos , Espectrometría de Masas , Proteínas de Plantas/genética
6.
Front Plant Sci ; 12: 664250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113365

RESUMEN

Multiple Arabidopsis arogenate dehydratase (ADT) knock-out (KO) mutants, with phenotypes having variable lignin levels (up to circa 70% reduction), were studied to investigate how differential reductions in ADTs perturb its overall plant systems biology. Integrated "omics" analyses (metabolome, transcriptome, and proteome) of wild type (WT), single and multiple ADT KO lines were conducted. Transcriptome and proteome data were collapsed into gene ortholog (GO) data, with this allowing for enzymatic reaction and metabolome cross-comparisons to uncover dominant or likely metabolic biosynthesis reactions affected. Network analysis of enzymes-highly correlated to stem lignin levels-deduced the involvement of novel putative lignin related proteins or processes. These included those associated with ribosomes, the spliceosome, mRNA transport, aminoacyl tRNA biosynthesis, and phosphorylation. While prior work helped explain lignin biosynthesis regulation at the transcriptional level, our data here provide support for a new hypothesis that there are additional post-transcriptional and translational level processes that need to be considered. These findings are anticipated to lead to development of more accurate depictions of lignin/phenylpropanoid biosynthesis models in situ, with new protein targets identified for further biochemical analysis and/or plant bioengineering. Additionally, using KEGG defined functional categorization of proteomics and transcriptomics analyses, we detected significant changes to glucosinolate, α-linolenic acid, nitrogen, carotenoid, aromatic amino acid, phenylpropanoid, and photosynthesis-related metabolic pathways in ADT KO mutants. Metabolomics results also revealed that putative carotenoid and galactolipid levels were generally increased in amount, whereas many glucosinolates and phenylpropanoids (including flavonoids and lignans) were decreased in the KO mutants.

7.
iScience ; 24(4): 102361, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33870146

RESUMEN

With the development of transcriptomic technologies, we are able to quantify precise changes in gene expression profiles from astronauts and other organisms exposed to spaceflight. Members of NASA GeneLab and GeneLab-associated analysis working groups (AWGs) have developed a consensus pipeline for analyzing short-read RNA-sequencing data from spaceflight-associated experiments. The pipeline includes quality control, read trimming, mapping, and gene quantification steps, culminating in the detection of differentially expressed genes. This data analysis pipeline and the results of its execution using data submitted to GeneLab are now all publicly available through the GeneLab database. We present here the full details and rationale for the construction of this pipeline in order to promote transparency, reproducibility, and reusability of pipeline data; to provide a template for data processing of future spaceflight-relevant datasets; and to encourage cross-analysis of data from other databases with the data available in GeneLab.

8.
J Nat Prod ; 84(3): 694-706, 2021 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-33687206

RESUMEN

Chlorogenic acid (CGA) and guaiacyl/syringyl (G/S) lignin formation involves hydroxycinnamoyl ester intermediacy, the latter formed via hydroxycinnamoyl CoA:shikimate hydroxycinnamoyl transferase (HCT) and hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) activities. HQT and HCT RNAi silencing of a commercial tobacco (Nicotiana tabacum) K326 line was examined herein. NtHQT gene silencing gave relatively normal plant phenotypes, with CGA levels reduced (down to 1% of wild type) with no effects on lignin. RNAi NtHCT silencing had markedly adverse phenotypes (e.g., stunted, multiple stems, delayed flowering, with senescence delayed by several months). Lignin contents were partially lowered, with a small increase in cleavable p-hydroxyphenyl (H) monomers; those plants had no detectable CGA level differences relative to wild type. In vitro NtHCT kinetic parameters revealed preferential p-coumaroyl CoA and shikimate esterification, as compared to other structurally related potential acyl group donors and acceptors. In the presence of coenzyme A, NtHCT catalyzed the reverse reaction. Site-directed mutagenesis of NtHCT (His153Ala) abolished enzymatic activity. NtHQT, by comparison, catalyzed preferential conversion of p-coumaroyl CoA and quinic acid to form p-coumaroyl quinate, the presumed CGA precursor. In sum, metabolic pathways to CGA and lignins appear to be fully independent, and previous conflicting reports of substrate versatilities and metabolic cross-talk are resolved.


Asunto(s)
Ácido Clorogénico/metabolismo , Lignina/metabolismo , Nicotiana/enzimología , Interferencia de ARN , Aciltransferasas/genética , Estructura Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Nicotiana/genética
9.
J Biol Chem ; 295(33): 11584-11601, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32565424

RESUMEN

The biochemical activities of dirigent proteins (DPs) give rise to distinct complex classes of plant phenolics. DPs apparently began to emerge during the aquatic-to-land transition, with phylogenetic analyses revealing the presence of numerous DP subfamilies in the plant kingdom. The vast majority (>95%) of DPs in these large multigene families still await discovery of their biochemical functions. Here, we elucidated the 3D structures of two pterocarpan-forming proteins with dirigent-like domains. Both proteins stereospecifically convert distinct diastereomeric chiral isoflavonoid precursors to the chiral pterocarpans, (-)- and (+)-medicarpin, respectively. Their 3D structures enabled comparisons with stereoselective lignan- and aromatic terpenoid-forming DP orthologs. Each protein provides entry into diverse plant natural products classes, and our experiments suggest a common biochemical mechanism in binding and stabilizing distinct plant phenol-derived mono- and bis-quinone methide intermediates during different C-C and C-O bond-forming processes. These observations provide key insights into both their appearance and functional diversification of DPs during land plant evolution/adaptation. The proposed biochemical mechanisms based on our findings provide important clues to how additional physiological roles for DPs and proteins harboring dirigent-like domains can now be rationally and systematically identified.


Asunto(s)
Glycyrrhiza/metabolismo , Ligasas/metabolismo , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Pterocarpanos/metabolismo , Cristalografía por Rayos X , Glycyrrhiza/química , Indolquinonas/metabolismo , Ligasas/química , Simulación del Acoplamiento Molecular , Pisum sativum/química , Proteínas de Plantas/química , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
10.
Chirality ; 32(6): 770-789, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32201979

RESUMEN

Two western red cedar pinoresinol-lariciresinol reductase (PLR) homologues were studied to determine their enantioselective, substrate versatility, and kinetic properties. PLRs are downstream of dirigent protein engendered, coniferyl alcohol derived, stereoselective coupling to afford entry into the 8- and 8'-linked furofuran lignan, pinoresinol. Our investigations showed that each PLR homolog can enantiospecifically metabolize different furofuran lignans with modified aromatic ring substituents, but where phenolic groups at both C4/C4' are essential for catalysis. These results are consistent with quinone methide intermediate formation in the PLR active site. Site-directed mutagenesis and kinetic measurements provided additional insight into factors affecting enantioselectivity and kinetic properties. From these data, PLRs can be envisaged to allow for the biotechnological potential of generation of various lignan skeleta, that could be differentially "decorated" on their aromatic ring substituents, via the action of upstream dirigent proteins.


Asunto(s)
Furanos/química , Lignanos/química , Oxidorreductasas/química , Cinética , Estereoisomerismo
12.
Plant Mol Biol ; 97(1-2): 73-101, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29713868

RESUMEN

KEY MESSAGE: Identification of DIR encoding genes in flax genome. Analysis of phylogeny, gene/protein structures and evolution. Identification of new conserved motifs linked to biochemical functions. Investigation of spatio-temporal gene expression and response to stress. Dirigent proteins (DIRs) were discovered during 8-8' lignan biosynthesis studies, through identification of stereoselective coupling to afford either (+)- or (-)-pinoresinols from E-coniferyl alcohol. DIRs are also involved or potentially involved in terpenoid, allyl/propenyl phenol lignan, pterocarpan and lignin biosynthesis. DIRs have very large multigene families in different vascular plants including flax, with most still of unknown function. DIR studies typically focus on a small subset of genes and identification of biochemical/physiological functions. Herein, a genome-wide analysis and characterization of the predicted flax DIR 44-membered multigene family was performed, this species being a rich natural grain source of 8-8' linked secoisolariciresinol-derived lignan oligomers. All predicted DIR sequences, including their promoters, were analyzed together with their public gene expression datasets. Expression patterns of selected DIRs were examined using qPCR, as well as through clustering analysis of DIR gene expression. These analyses further implicated roles for specific DIRs in (-)-pinoresinol formation in seed-coats, as well as (+)-pinoresinol in vegetative organs and/or specific responses to stress. Phylogeny and gene expression analysis segregated flax DIRs into six distinct clusters with new cluster-specific motifs identified. We propose that these findings can serve as a foundation to further systematically determine functions of DIRs, i.e. other than those already known in lignan biosynthesis in flax and other species. Given the differential expression profiles and inducibility of the flax DIR family, we provisionally propose that some DIR genes of unknown function could be involved in different aspects of secondary cell wall biosynthesis and plant defense.


Asunto(s)
Lino/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas/genética , Secuencias de Aminoácidos , Butileno Glicoles/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Evolución Molecular , Lino/clasificación , Lignanos/metabolismo , Filogenia , Proteínas de Plantas/química , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Plant Physiol ; 177(1): 115-131, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29523714

RESUMEN

Arogenate dehydratase (ADT) catalyzes the final step of phenylalanine (Phe) biosynthesis. Previous work showed that ADT-deficient Arabidopsis (Arabidopsis thaliana) mutants had significantly reduced lignin contents, with stronger reductions in lines that had deficiencies in more ADT isoforms. Here, by analyzing Arabidopsis ADT mutants using our phenomics facility and ultra-performance liquid chromatography-mass spectrometry-based metabolomics, we describe the effects of the modulation of ADT on photosynthetic parameters and secondary metabolism. Our data indicate that a reduced carbon flux into Phe biosynthesis in ADT mutants impairs the consumption of photosynthetically produced ATP, leading to an increased ATP/ADP ratio, the overaccumulation of transitory starch, and lower electron transport rates. The effect on electron transport rates is caused by an increase in proton motive force across the thylakoid membrane that down-regulates photosystem II activity by the high-energy quenching mechanism. Furthermore, quantitation of secondary metabolites in ADT mutants revealed reduced flavonoid, phenylpropanoid, lignan, and glucosinolate contents, including glucosinolates that are not derived from aromatic amino acids, and significantly increased contents of putative galactolipids and apocarotenoids. Additionally, we used real-time atmospheric monitoring mass spectrometry to compare respiration and carbon fixation rates between the wild type and adt3/4/5/6, our most extreme ADT knockout mutant, which revealed no significant difference in both night- and day-adapted plants. Overall, these data reveal the profound effects of altered ADT activity and Phe metabolism on secondary metabolites and photosynthesis with implications for plant improvement.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Hidroliasas/metabolismo , Fotosíntesis/fisiología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Dióxido de Carbono/metabolismo , Cromatografía Liquida/métodos , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Hidroliasas/genética , Espectrometría de Masas/métodos , Metabolómica/métodos , Mutación , Fotoperiodo , Metabolismo Secundario/genética
14.
Genome Announc ; 5(39)2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28963216

RESUMEN

A Gordonia species was cultured from soil of a red alder (Alnus rubra) plant. Here we present the assembled and annotated genome sequence to aid investigations into the potential of this organism as a symbiont and comparative studies of the genus Gordonia.

15.
Plant Biotechnol J ; 15(8): 970-981, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28064439

RESUMEN

A foundational study assessed effects of biochemical pathway introduction into poplar to produce eugenol, chavicol, p-anol, isoeugenol and their sequestered storage products, from potentially available substrates, coniferyl and p-coumaryl alcohols. At the onset, it was unknown whether significant carbon flux to monolignols vs. other phenylpropanoid (acetate) pathway metabolites would be kinetically favoured. Various transgenic poplar lines generated eugenol and chavicol glucosides in ca. 0.45% (~0.35 and ~0.1%, respectively) of dry weight foliage tissue in field trials, as well as their corresponding aglycones in trace amounts. There were only traces of any of these metabolites in branch tissues, even after ~4-year field trials. Levels of bioproduct accumulation in foliage plateaued, even at the lowest introduced gene expression levels, suggesting limited monolignol substrate availability. Nevertheless, this level still allows foliage collection for platform chemical production, with the remaining (stem) biomass available for wood, pulp/paper and bioenergy product purposes. Several transformed lines displayed unexpected precocious flowering after 4-year field trial growth. This necessitated terminating (felling) these particular plants, as USDA APHIS prohibits the possibility of their interacting (cross-pollination, etc.) with wild-type (native plant) lines. In future, additional biotechnological approaches can be employed (e.g. gene editing) to produce sterile plant lines, to avoid such complications. While increased gene expression did not increase target bioproduct accumulation, the exciting possibility now exists of significantly increasing their amounts (e.g. 10- to 40-fold plus) in foliage and stems via systematic deployment of numerous 'omics', systems biology, synthetic biology and metabolic flux modelling approaches.


Asunto(s)
Eugenol/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Populus/metabolismo , Biotecnología/métodos , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Populus/genética
16.
J Nat Prod ; 78(6): 1231-42, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25981198

RESUMEN

An integrated omics approach using genomics, transcriptomics, metabolomics (MALDI mass spectrometry imaging, MSI), and bioinformatics was employed to study spatiotemporal formation and deposition of health-protecting polymeric lignans and plant defense cyanogenic glucosides. Intact flax (Linum usitatissimum) capsules and seed tissues at different development stages were analyzed. Transcriptome analyses indicated distinct expression patterns of dirigent protein (DP) gene family members encoding (-)- and (+)-pinoresinol-forming DPs and their associated downstream metabolic processes, respectively, with the former expressed at early seed coat development stages. Genes encoding (+)-pinoresinol-forming DPs were, in contrast, expressed at later development stages. Recombinant DP expression and DP assays also unequivocally established their distinct stereoselective biochemical functions. Using MALDI MSI and ion mobility separation analyses, the pinoresinol downstream derivatives, secoisolariciresinol diglucoside (SDG) and SDG hydroxymethylglutaryl ester, were localized and detectable only in early seed coat development stages. SDG derivatives were then converted into higher molecular weight phenolics during seed coat maturation. By contrast, the plant defense cyanogenic glucosides, the monoglucosides linamarin/lotaustralin, were detected throughout the flax capsule, whereas diglucosides linustatin/neolinustatin only accumulated in endosperm and embryo tissues. A putative biosynthetic pathway to the cyanogens is proposed on the basis of transcriptome coexpression data. Localization of all metabolites was at ca. 20 µm resolution, with the web based tool OpenMSI enabling not only resolution enhancement but also an interactive system for real-time searching for any ion in the tissue under analysis.


Asunto(s)
Lino/química , Furanos/química , Glicósidos/química , Lignanos/química , Semillas/química , Butileno Glicoles/análisis , Lino/genética , Furanos/análisis , Glucósidos/análisis , Glicósidos/análisis , Lignanos/análisis , Estructura Molecular , Nitrilos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
Biochim Biophys Acta ; 1850(7): 1405-14, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25863286

RESUMEN

BACKGROUND: Rice Os9BGlu31 is a transglucosidase that can transfer glucose to phenolic acids, flavonoids, and phytohormones. Os9BGlu31 displays a broad specificity with phenolic 1-O-ß-D-glucose esters acting as better glucose donors than glucosides, whereas the free phenolic acids of these esters are also excellent acceptor substrates. METHODS: Based on homology modeling of this enzyme, we made single point mutations of residues surrounding the acceptor binding region of the Os9BGlu31 active site. Products of the wild type and mutant enzymes in transglycosylation of phenolic acceptors from 4-nitrophenyl ß-D-glucopyranoside donor were identified and measured by UPLC and negative ion electrospray ionization tandem mass spectrometry (LCMSMS). RESULTS: The most active variant produced was W243N, while I172T and L183Q mutations decreased the activity, and other mutations at W243 (A, D, M, N, F and Y) had variable effects, depending on the acceptor substrate. The Os9BGlu31 W243N mutant activity was higher than that of wild type on phenolic acids and kaempferol, a flavonol containing 4 hydroxyl groups, and the wild type Os9BGlu31 produced only a single product from each of these acceptors in significant amounts, while W243 variants produced multiple glucoconjugates. Fragmentation analysis provisionally identified the kaempferol transglycosylation products as kaempferol 3-O, 7-O, and 4'-O glucosides and 3,7-O, 4',7-O, and 3,4'-O bis-O-glucosides. The Os9BGlu31 W243 mutants were also better able to use kaempferol 3-O-glucoside as a donor substrate. GENERAL SIGNIFICANCE: The W243 residue was found to be critical to the substrate and product specificity of Os9BGlu31 transglucosidase and mutation of this residue allows production of a range of glucoconjugates.


Asunto(s)
Glucosidasas/genética , Quempferoles/metabolismo , Monosacáridos/metabolismo , Mutación , Proteínas de Plantas/genética , Dominio Catalítico/genética , Cromatografía Líquida de Alta Presión , Glucosidasas/química , Glucosidasas/metabolismo , Quempferoles/química , Cinética , Modelos Moleculares , Estructura Molecular , Monosacáridos/química , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oryza/enzimología , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato , Espectrometría de Masas en Tándem
18.
J Biol Chem ; 290(3): 1308-18, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25411250

RESUMEN

Control over phenoxy radical-radical coupling reactions in vivo in vascular plants was enigmatic until our discovery of dirigent proteins (DPs, from the Latin dirigere, to guide or align). The first three-dimensional structure of a DP ((+)-pinoresinol-forming DP, 1.95 Å resolution, rhombohedral space group H32)) is reported herein. It has a tightly packed trimeric structure with an eight-stranded ß-barrel topology for each DP monomer. Each putative substrate binding and orientation coupling site is located on the trimer surface but too far apart for intermolecular coupling between sites. It is proposed that each site enables stereoselective coupling (using either two coniferyl alcohol radicals or a radical and a monolignol). Interestingly, there are six differentially conserved residues in DPs affording either the (+)- or (-)-antipodes in the vicinity of the putative binding site and region known to control stereoselectivity. DPs are involved in lignan biosynthesis, whereas dirigent domains/sites have been implicated in lignin deposition.


Asunto(s)
Furanos/química , Lignanos/química , Proteínas de Plantas/química , Alcoholes/química , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Lignina/química , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Pisum sativum/química , Pisum sativum/genética , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Estereoisomerismo , Especificidad por Sustrato
19.
Phytochemistry ; 113: 140-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25457488

RESUMEN

Continually exposed to potential pathogens, vascular plants have evolved intricate defense mechanisms to recognize encroaching threats and defend themselves. They do so by inducing a set of defense responses that can help defeat and/or limit effects of invading pathogens, of which the non-host disease resistance response is the most common. In this regard, pea (Pisum sativum) pod tissue, when exposed to Fusarium solani f. sp. phaseoli spores, undergoes an inducible transcriptional activation of pathogenesis-related genes, and also produces (+)-pisatin, its major phytoalexin. One of the inducible pathogenesis-related genes is Disease Resistance Response-206 (DRR206), whose role in vivo was unknown. DRR206 is, however, related to the dirigent protein (DP) family. In this study, its biochemical function was investigated in planta, with the metabolite associated with its gene induction being pinoresinol monoglucoside. Interestingly, both pinoresinol monoglucoside and (+)-pisatin were co-localized in pea pod endocarp epidermal cells, as demonstrated using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging. In addition, endocarp epidermal cells are also the site for both chalcone synthase and DRR206 gene expression. Taken together, these data indicate that both (+)-pisatin and pinoresinol monoglucoside function in the overall phytoalexin responses.


Asunto(s)
Pisum sativum , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Resistencia a la Enfermedad/genética , Furanos/metabolismo , Regulación de la Expresión Génica , Lignanos/metabolismo , Estructura Molecular , Pisum sativum/química , Pisum sativum/citología , Pisum sativum/genética , Pisum sativum/metabolismo , Enfermedades de las Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Pterocarpanos/química , Pterocarpanos/metabolismo , Sesquiterpenos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Fitoalexinas
20.
Mol Biosyst ; 10(11): 2838-49, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25166004

RESUMEN

Podophyllum hexandrum and, to a much lesser extent P. peltatum, are sources of podophyllotoxin, extensively used as a chemical scaffold for various anti-cancer drugs. In this study, integrated omics technologies (including advanced mass spectrometry/metabolomics, transcriptome sequencing/gene assemblies, and bioinformatics) gave unequivocal evidence that both plant species possess a hitherto unknown aporphine alkaloid metabolic pathway. Specifically, RNA-seq transcriptome sequencing and bioinformatics guided gene assemblies/analyses in silico suggested presence of transcripts homologous to genes encoding all known steps in aporphine alkaloid biosynthesis. A comprehensive metabolomics analysis, including UPLC-TOF-MS and MALDI-MS imaging in situ, then enabled detection, identification, localization and quantification of the aporphine alkaloids, magnoflorine, corytuberine and muricinine, in the underground and aerial tissues. Interestingly, the purported presence of alkaloids in Podophyllum species has been enigmatic since the 19th century, remaining unresolved until now. The evolutionary and phylogenetic ramifications of this discovery are discussed.


Asunto(s)
Aporfinas/metabolismo , Genómica/métodos , Proteínas de Plantas/genética , Podophyllum/enzimología , Evolución Molecular , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Filogenia , Proteínas de Plantas/metabolismo , Podophyllum/clasificación , Podophyllum/genética , Rizoma/enzimología , Rizoma/genética , Transducción de Señal , Xilema/enzimología , Xilema/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...