Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
J Natl Compr Canc Netw ; 22(3): 175-204, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38626800

RESUMEN

Chronic lymphocytic leukemia (CLL) and small lymphocytic lymphoma (SLL) are essentially different manifestations of the same disease that are similarly managed. A number of molecular and cytogenetic variables with prognostic implications have been identified. Undetectable minimal residual disease at the end of treatment with chemoimmunotherapy or venetoclax-based combination regimens is an independent predictor of improved survival among patients with previously untreated or relapsed/refractory CLL/SLL. The selection of treatment is based on the disease stage, presence or absence of del(17p) or TP53 mutation, immunoglobulin heavy chain variable region mutation status, patient age, performance status, comorbid conditions, and the agent's toxicity profile. This manuscript discusses the recommendations outlined in the NCCN Guidelines for the diagnosis and management of patients with CLL/SLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Pronóstico , Inmunoterapia
2.
Assessment ; : 10731911241236336, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38494894

RESUMEN

Graphomotor and time-based variables from the digital Clock Drawing Test (dCDT) characterize cognitive functions. However, no prior publications have quantified the strength of the associations between digital clock variables as they are produced. We hypothesized that analysis of the production of clock features and their interrelationships, as suggested, will differ between the command and copy test conditions. Older adults aged 65+ completed a digital clock drawing to command and copy conditions. Using a Bayesian hill-climbing algorithm and bootstrapping (10,000 samples), we derived directed acyclic graphs (DAGs) to examine network structure for command and copy dCDT variables. Although the command condition showed moderate associations between variables (µ|ßz|= 0.34) relative to the copy condition (µ|ßz| = 0.25), the copy condition network had more connections (18/18 versus 15/18 command). Network connectivity across command and copy was most influenced by five of the 18 variables. The direction of dependencies followed the order of instructions better in the command condition network. Digitally acquired clock variables relate to one another but differ in network structure when derived from command or copy conditions. Continued analyses of clock drawing production should improve understanding of quintessential normal features to aid in early neurodegenerative disease detection.

3.
Front Immunol ; 14: 1251127, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822931

RESUMEN

Immunotherapeutic targeting of surface regulatory proteins and pharmacologic inhibition of critical signaling pathways has dramatically shifted our approach to the care of individuals with B cell malignancies. This evolution in therapy reflects the central role of the B cell receptor (BCR) signaling complex and its co-receptors in the pathogenesis of B lineage leukemias and lymphomas. Members of the Fc receptor-like gene family (FCRL1-6) encode cell surface receptors with complex tyrosine-based regulation that are preferentially expressed by B cells. Among them, FCRL1 expression peaks on naïve and memory B cells and is unique in terms of its intracellular co-activation potential. Recent studies in human and mouse models indicate that FCRL1 contributes to the formation of the BCR signalosome, modulates B cell signaling, and promotes humoral responses. Progress in understanding its regulatory properties, along with evidence for its over-expression by mature B cell leukemias and lymphomas, collectively imply important yet unmet opportunities for FCRL1 in B cell development and transformation. Here we review recent advances in FCRL1 biology and highlight its emerging significance as a promising biomarker and therapeutic target in B cell lymphoproliferative disorders.


Asunto(s)
Linfoma , Neoplasias , Animales , Ratones , Humanos , Neoplasias/metabolismo , Linfocitos B/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Receptores de Superficie Celular/metabolismo , Linfoma/metabolismo , Proteínas de la Membrana/metabolismo
4.
Gastroenterology ; 165(4): 946-962.e13, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37454979

RESUMEN

BACKGROUND & AIMS: Ulcerative colitis (UC) is characterized by severe inflammation and destruction of the intestinal epithelium, and is associated with specific risk single nucleotide polymorphisms in HLA class II. Given the recently discovered interactions between subsets of HLA-DP molecules and the activating natural killer (NK) cell receptor NKp44, genetic associations of UC and HLA-DP haplotypes and their functional implications were investigated. METHODS: HLA-DP haplotype and UC risk association analyses were performed (UC: n = 13,927; control: n = 26,764). Expression levels of HLA-DP on intestinal epithelial cells (IECs) in individuals with and without UC were quantified. Human intestinal 3-dimensional (3D) organoid cocultures with human NK cells were used to determine functional consequences of interactions between HLA-DP and NKp44. RESULTS: These studies identified HLA-DPA1∗01:03-DPB1∗04:01 (HLA-DP401) as a risk haplotype and HLA-DPA1∗01:03-DPB1∗03:01 (HLA-DP301) as a protective haplotype for UC in European populations. HLA-DP expression was significantly higher on IECs of individuals with UC compared with controls. IECs in human intestinal 3D organoids derived from HLA-DP401pos individuals showed significantly stronger binding of NKp44 compared with HLA-DP301pos IECs. HLA-DP401pos IECs in organoids triggered increased degranulation and tumor necrosis factor production by NKp44+ NK cells in cocultures, resulting in enhanced epithelial cell death compared with HLA-DP301pos organoids. Blocking of HLA-DP401-NKp44 interactions (anti-NKp44) abrogated NK cell activity in cocultures. CONCLUSIONS: We identified an UC risk HLA-DP haplotype that engages NKp44 and activates NKp44+ NK cells, mediating damage to intestinal epithelial cells in an HLA-DP haplotype-dependent manner. The molecular interaction between NKp44 and HLA-DP401 in UC can be targeted by therapeutic interventions to reduce NKp44+ NK cell-mediated destruction of the intestinal epithelium in UC.


Asunto(s)
Colitis Ulcerosa , Antígenos HLA-DP , Humanos , Antígenos HLA-DP/genética , Colitis Ulcerosa/genética , Células Asesinas Naturales , Haplotipos , Células Epiteliales
5.
PLoS Med ; 20(6): e1004157, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37384638

RESUMEN

BACKGROUND: Patients with chronic lymphocytic leukemia (CLL) have reduced seroconversion rates and lower binding antibody (Ab) and neutralizing antibody (NAb) titers than healthy individuals following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) mRNA vaccination. Here, we dissected vaccine-mediated humoral and cellular responses to understand the mechanisms underlying CLL-induced immune dysfunction. METHODS AND FINDINGS: We performed a prospective observational study in SARS-CoV-2 infection-naïve CLL patients (n = 95) and healthy controls (n = 30) who were vaccinated between December 2020 and June 2021. Sixty-one CLL patients and 27 healthy controls received 2 doses of the Pfizer-BioNTech BNT162b2 vaccine, while 34 CLL patients and 3 healthy controls received 2 doses of the Moderna mRNA-1273 vaccine. The median time to analysis was 38 days (IQR, 27 to 83) for CLL patients and 36 days (IQR, 28 to 57) for healthy controls. Testing plasma samples for SARS-CoV-2 anti-spike and receptor-binding domain Abs by enzyme-linked immunosorbent assay (ELISA), we found that all healthy controls seroconverted to both antigens, while CLL patients had lower response rates (68% and 54%) as well as lower median titers (23-fold and 30-fold; both p < 0.001). Similarly, NAb responses against the then prevalent D614G and Delta SARS-CoV-2 variants were detected in 97% and 93% of controls, respectively, but in only 42% and 38% of CLL patients, who also exhibited >23-fold and >17-fold lower median NAb titers (both p < 0.001). Interestingly, 26% of CLL patients failed to develop NAbs but had high-titer binding Abs that preferentially reacted with the S2 subunit of the SARS-CoV-2 spike. Since these patients were also seropositive for endemic human coronaviruses (HCoVs), these responses likely reflect cross-reactive HCoV Abs rather than vaccine-induced de novo responses. CLL disease status, advanced Rai stage (III-IV), elevated serum beta-2 microglobulin levels (ß2m >2.4 mg/L), prior therapy, anti-CD20 immunotherapy (<12 months), and intravenous immunoglobulin (IVIg) prophylaxis were all predictive of an inability to mount SARS-CoV-2 NAbs (all p ≤ 0.03). T cell response rates determined for a subset of participants were 2.8-fold lower for CLL patients compared to healthy controls (0.05, 95% CI 0.01 to 0.27, p < 0.001), with reduced intracellular IFNγ staining (p = 0.03) and effector polyfunctionality (p < 0.001) observed in CD4+ but not in CD8+ T cells. Surprisingly, in treatment-naïve CLL patients, BNT162b2 vaccination was identified as an independent negative risk factor for NAb generation (5.8, 95% CI 1.6 to 27, p = 0.006). CLL patients who received mRNA-1273 had 12-fold higher (p < 0.001) NAb titers and 1.7-fold higher (6.5, 95% CI 1.3 to 32, p = 0.02) response rates than BNT162b2 vaccinees despite similar disease characteristics. The absence of detectable NAbs in CLL patients was associated with reduced naïve CD4+ T cells (p = 0.03) and increased CD8+ effector memory T cells (p = 0.006). Limitations of the study were that not all participants were subjected to the same immune analyses and that pre-vaccination samples were not available. CONCLUSIONS: CLL pathogenesis is characterized by a progressive loss of adaptive immune functions, including in most treatment-naïve patients, with preexisting memory being preserved longer than the capacity to mount responses to new antigens. In addition, higher NAb titers and response rates identify mRNA-1273 as a superior vaccine for CLL patients.


Asunto(s)
COVID-19 , Leucemia Linfocítica Crónica de Células B , Humanos , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Estudios Prospectivos , SARS-CoV-2 , COVID-19/prevención & control , Vacunación
6.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901962

RESUMEN

The control of infections by the vertebrate adaptive immune system requires careful modulation to optimize defense and minimize harm to the host. The Fc receptor-like (FCRL) genes encode immunoregulatory molecules homologous to the receptors for the Fc portion of immunoglobulin (FCR). To date, nine different genes (FCRL1-6, FCRLA, FCRLB and FCRLS) have been identified in mammalian organisms. FCRL6 is located at a separate chromosomal position from the FCRL1-5 locus, has conserved synteny in mammals and is situated between the SLAMF8 and DUSP23 genes. Here, we show that this three gene block underwent repeated duplication in Dasypus novemcinctus (nine-banded armadillo) resulting in six FCRL6 copies, of which five appear functional. Among 21 mammalian genomes analyzed, this expansion was unique to D. novemcinctus. Ig-like domains that derive from the five clustered FCRL6 functional gene copies show high structural conservation and sequence identity. However, the presence of multiple non-synonymous amino acid changes that would diversify individual receptor function has led to the hypothesis that FCRL6 endured subfunctionalization during evolution in D. novemcinctus. Interestingly, D. novemcinctus is noteworthy for its natural resistance to the Mycobacterium leprae pathogen that causes leprosy. Because FCRL6 is chiefly expressed by cytotoxic T and NK cells, which are important in cellular defense responses against M. leprae, we speculate that FCRL6 subfunctionalization could be relevant for the adaptation of D. novemcinctus to leprosy. These findings highlight the species-specific diversification of FCRL family members and the genetic complexity underlying evolving multigene families critical for modulating adaptive immune protection.


Asunto(s)
Armadillos , Lepra , Animales , Armadillos/genética , Armadillos/microbiología , Mycobacterium leprae/genética , Lepra/genética , Genoma , Células Asesinas Naturales , Receptores Fc/genética
7.
Int J Biochem Cell Biol ; 158: 106405, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36966906

RESUMEN

We studied, using a combination of animal and cellular models, the glial mechanisms underlying the anti-neuropathic and anti-inflammatory properties of PAM-2 [(E)-3-furan-2-yl-N-p-tolyl-acrylamide], a positive allosteric modulator of α7 nicotinic acetylcholine receptors (nAChRs). In mice, PAM-2 decreased the inflammatory process induced by the combination of oxaliplatin (OXA), a chemotherapeutic agent, and interleukin-1ß (IL-1ß), a pro-inflammatory molecule. In the brain and spinal cord of treated animals, PAM-2 reduced pro-inflammatory cytokines/chemokines by mechanisms involving mRNA downregulation of factors in the toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway, and increased the precursor of brain-derived neurotrophic factor (proBDNF). To determine the molecular mechanisms underlying the anti-inflammatory activity of PAM-2, both human C20 microglia and normal human astrocytes (NHA) were used. The results showed that PAM-2-induced potentiation of glial α7 nAChRs decreases OXA/IL-1ß-induced overexpression of inflammatory molecules by different mechanisms, including mRNA downregulation of factors in the NF-κB pathway (in microglia and astrocyte) and ERK (only in microglia). The OXA/IL-1ß-mediated reduction in proBDNF was prevented by PAM-2 in microglia, but not in astrocytes. Our findings also indicate that OXA/IL-1ß-induced organic cation transporter 1 (OCT1) expression is decreased by PAM-2, suggesting that decreased OXA influx may be involved in the protective effects of PAM-2. The α7-selective antagonist methyllycaconitine blocked the most important effects mediated by PAM-2 at both animal and cellular levels, supporting a mechanism involving α7 nAChRs. In conclusion, glial α7 nAChR stimulation/potentiation downregulates neuroinflammatory targets, and thereby remains a promising therapeutic option for cancer chemotherapy-induced neuroinflammation and neuropathic pain.


Asunto(s)
Antineoplásicos , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Humanos , Ratones , Antiinflamatorios , Neuroglía/metabolismo , FN-kappa B/metabolismo
8.
J Inflamm (Lond) ; 20(1): 4, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36698151

RESUMEN

BACKGROUND: Inflammation is present in neurological and peripheral disorders. Thus, targeting inflammation has emerged as a viable option for treating these disorders. Previous work indicated pretreatment with beta-funaltrexamine (ß-FNA), a selective mu-opioid receptor (MOR) antagonist, inhibited inflammatory signaling in vitro in human astroglial cells, as well as lipopolysaccharide (LPS)-induced neuroinflammation and sickness-like-behavior in mice. This study explores the protective effects of ß-FNA when treatment occurs 10 h after LPS administration and is the first-ever investigation of the sex-dependent effects of ß-FNA on LPS-induced inflammation in the brain and peripheral tissues, including the intestines. RESULTS: Male and female C57BL/6J mice were administered LPS followed by treatment with ß-FNA-immediately or 10 h post-LPS. Sickness- and anxiety-like behavior were assessed using an open-field test and an elevated-plus-maze test, followed by the collection of whole brain, hippocampus, prefrontal cortex, cerebellum/brain stem, plasma, spleen, liver, large intestine (colon), proximal small intestine, and distal small intestine. Levels of inflammatory chemokines/cytokines (interferon γ-induced-protein, IP-10 (CXCL10); monocyte-chemotactic-protein 1, MCP-1 (CCL2); interleukin-6, IL-6; interleukin-1ß, IL-1ß; and tumor necrosis factor-alpha, TNF-α) in tissues were measured using an enzyme-linked immunosorbent assay. Western blot analysis was used to assess nuclear factor-kappa B (NF-κB) expression. There were sex-dependent differences in LPS-induced inflammation across brain regions and peripheral tissues. Overall, LPS-induced CXCL10, CCL2, TNF-α, and NF-κB were most effectively downregulated by ß-FNA; and ß-FNA effects differed across brain regions, peripheral tissues, timing of the dose, and in some instances, in a sex-dependent manner. ß-FNA reduced LPS-induced anxiety-like behavior most effectively in female mice. CONCLUSION: These findings provide novel insights into the sex-dependent anti-inflammatory effects of ß-FNA and advance this agent as a potential therapeutic option for reducing both neuroinflammation an intestinal inflammation.

9.
Inflammopharmacology ; 31(1): 349-358, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36527567

RESUMEN

Neuroinflammation is involved in a wide range of brain disorders, thus there is great interest in identifying novel anti-inflammatory agents to include in therapeutic strategies. Our previous in vitro studies revealed that beta-funaltrexamine (ß-FNA), a well-characterized selective mu-opioid receptor (MOR) antagonist, inhibits inflammatory signaling in human astroglial cells, albeit through an apparent MOR-independent mechanism. We also previously determined that lipopolysaccharide (LPS)-induced sickness behavior and neuroinflammation in mice are prevented by pretreatment with ß-FNA. Herein we investigated the temporal importance of ß-FNA treatment in this pre-clinical model of LPS-induced neuroinflammation. Adult, male C57BL/6J mice were administered an i.p. injection of LPS followed by treatment (i.p. injection) with ß-FNA immediately or 4 h post-LPS. Sickness behavior was assessed using an open-field test, followed by assessment of inflammatory signaling in the brain, spleen, and plasma. Levels of inflammatory chemokines/cytokines (interferon γ-induced protein, CXCL10; monocyte chemotactic protein 1, CCL2; and interleukin-6, IL-6) in tissues were measured using an enzyme-linked immunosorbent assay and nuclear factor-kappa B (NFκB), p38 mitogen activated kinase (p38 MAPK), and glial fibrillary acidic protein (GFAP) expression were measured by western blot. LPS-induced sickness behavior and chemokine expression were inhibited more effectively when ß-FNA treatment occurred immediately after LPS administration, as opposed to 4 h post-LPS; and ß-FNA-mediated effects were time-dependent as evidenced by inhibition at 24 h, but not at 8 h. The inhibitory effects of ß-FNA on chemokine expression were more evident in the brain versus the spleen or plasma. LPS-induced NFκB-p65 and p38 MAPK expression in the brain and spleen were inhibited at 8 and 24 h post-LPS. These findings extend our understanding of the anti-inflammatory effects of ß-FNA and warrant further investigation into its therapeutic potential.


Asunto(s)
Lipopolisacáridos , Enfermedades Neuroinflamatorias , Masculino , Humanos , Animales , Ratones , Lipopolisacáridos/farmacología , Ratones Endogámicos C57BL , Antagonistas de Narcóticos/farmacología , FN-kappa B/metabolismo , Quimiocinas/metabolismo , Inflamación , Antiinflamatorios/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
J Med Chem ; 66(1): 641-656, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36548390

RESUMEN

Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.


Asunto(s)
Enfermedad de Huntington , Tomografía de Emisión de Positrones , Animales , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Ligandos , Tomografía de Emisión de Positrones/métodos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
11.
Front Aging Neurosci ; 14: 868500, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204547

RESUMEN

We examined the construct of mental planning by quantifying digital clock drawing digit placement accuracy in command and copy conditions, and by investigating its underlying neuropsychological correlates and functional connectivity. We hypothesized greater digit misplacement would associate with attention, abstract reasoning, and visuospatial function, as well as functional connectivity from a major source of acetylcholine throughout the brain: the basal nucleus of Meynert (BNM). Participants (n = 201) included non-demented older adults who completed all metrics within 24 h of one another. A participant subset met research criteria for mild cognitive impairment (MCI; n = 28) and was compared to non-MCI participants on digit misplacement accuracy and expected functional connectivity differences. Digit misplacement and a comparison dissociate variable of total completion time were acquired for command and copy conditions. a priori fMRI seeds were the bilateral BNM. Command digit misplacement is negatively associated with semantics, visuospatial, visuoconstructional, and reasoning (p's < 0.01) and negatively associated with connectivity from the BNM to the anterior cingulate cortex (ACC; p = 0.001). Individuals with MCI had more misplacement and less BNM-ACC connectivity (p = 0.007). Total completion time involved posterior and cerebellar associations only. Findings suggest clock drawing digit placement accuracy may be a unique metric of mental planning and provide insight into neurodegenerative disease.

12.
J Natl Compr Canc Netw ; 20(6): 622-634, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35714675

RESUMEN

The treatment landscape of chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) has significantly evolved in recent years. Targeted therapy with Bruton's tyrosine kinase (BTK) inhibitors and BCL-2 inhibitors has emerged as an effective chemotherapy-free option for patients with previously untreated or relapsed/refractory CLL/SLL. Undetectable minimal residual disease after the end of treatment is emerging as an important predictor of progression-free and overall survival for patients treated with fixed-duration BCL-2 inhibitor-based treatment. These NCCN Guidelines Insights discuss the updates to the NCCN Guidelines for CLL/SLL specific to the use of chemotherapy-free treatment options for patients with treatment-naïve and relapsed/refractory disease.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Linfoma de Células B , Antineoplásicos/uso terapéutico , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Neoplasia Residual , Proteínas Proto-Oncogénicas c-bcl-2/uso terapéutico
13.
Protein Eng Des Sel ; 352022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35174857

RESUMEN

Quantification of the anti-SARS-CoV-2 antibody response has proven to be a prominent diagnostic tool during the COVID-19 pandemic. Antibody measurements have aided in the determination of humoral protection following infection or vaccination and will likely be essential for predicting the prevalence of population level immunity over the next several years. Despite widespread use, current tests remain limited in part, because antibody capture is accomplished through the use of complete spike and nucleocapsid proteins that contain significant regions of overlap with common circulating coronaviruses. To address this limitation, a unique epitope display platform utilizing monovalent display and protease-driven capture of peptide epitopes was used to select high affinity peptides. A single round of selection using this strategy with COVID-19 positive patient plasma samples revealed surprising differences and specific patterns in the antigenicity of SARS-CoV-2 proteins, especially the spike protein. Putative epitopes were assayed for specificity with convalescent and control samples, and the individual binding kinetics of peptides were also determined. A subset of prioritized peptides was used to develop an antibody diagnostic assay that showed low cross reactivity while detecting 37% more positive antibody cases than a gold standard FDA EUA test. Finally, a subset of peptides were compared with serum neutralization activity to establish a 2 peptide assay that strongly correlates with neutralization. Together, these data demonstrate a novel phage display method that is capable of comprehensively and rapidly mapping patient viral antibody responses and selecting high affinity public epitopes for the diagnosis of humoral immunity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Epítopos , Humanos , Pandemias , Péptidos , Pruebas Serológicas , Glicoproteína de la Espiga del Coronavirus
14.
medRxiv ; 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36597532

RESUMEN

Chronic lymphocytic leukemia (CLL) patients have lower seroconversion rates and antibody titers following SARS-CoV-2 vaccination, but the reasons for this diminished response are poorly understood. Here, we studied humoral and cellular responses in 95 CLL patients and 30 healthy controls after two BNT162b2 or mRNA-2173 mRNA immunizations. We found that 42% of CLL vaccinees developed SARS-CoV-2-specific binding and neutralizing antibodies (NAbs), while 32% had no response. Interestingly, 26% were seropositive, but had no detectable NAbs, suggesting the maintenance of pre-existing endemic human coronavirus-specific antibodies that cross-react with the S2 domain of the SARS-CoV-2 spike. These individuals had more advanced disease. In treatment-naïve CLL patients, mRNA-2173 induced 12-fold higher NAb titers and 1.7-fold higher response rates than BNT162b2. These data reveal a graded loss of immune function, with pre-existing memory being preserved longer than the capacity to respond to new antigens, and identify mRNA-2173 as a superior vaccine for CLL patients.

15.
Front Digit Health ; 3: 750661, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34723243

RESUMEN

Developing tools for efficiently measuring cognitive change specifically and brain health generally-whether for clinical use or as endpoints in clinical trials-is a major challenge, particularly for conditions such as Alzheimer's disease. Technology such as connected devices and advances in artificial intelligence offer the possibility of creating and deploying clinical-grade tools with high sensitivity, rapidly, cheaply, and non-intrusively. Starting from a widely-used paper and pencil cognitive status test-The Clock Drawing Test-we combined a digital input device to capture time-stamped drawing coordinates with a machine learning analysis of drawing behavior to create DCTclock™, an automated analysis of nuances in cognitive performance beyond successful task completion. Development and validation was conducted on a dataset of 1,833 presumed cognitively unimpaired and clinically diagnosed cognitively impaired individuals with varied neurological conditions. We benchmarked DCTclock against existing clock scoring systems and the Mini-Mental Status Examination, a widely-used but lengthier cognitive test, and showed that DCTclock offered a significant improvement in the detection of early cognitive impairment and the ability to characterize individuals along the Alzheimer's disease trajectory. This offers an example of a robust framework for creating digital biomarkers that can be used clinically and in research for assessing neurological function.

16.
J Med Chem ; 64(16): 12003-12021, 2021 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-34351166

RESUMEN

The expanded polyglutamine-containing mutant huntingtin (mHTT) protein is implicated in neuronal degeneration of medium spiny neurons in Huntington's disease (HD) for which multiple therapeutic approaches are currently being evaluated to eliminate or reduce mHTT. Development of effective and orthogonal biomarkers will ensure accurate assessment of the safety and efficacy of pharmacologic interventions. We have identified and optimized a class of ligands that bind to oligomerized/aggregated mHTT, which is a hallmark in the HD postmortem brain. These ligands are potentially useful imaging biomarkers for HD therapeutic development in both preclinical and clinical settings. We describe here the optimization of the benzo[4,5]imidazo[1,2-a]pyrimidine series that show selective binding to mHTT aggregates over Aß- and/or tau-aggregates associated with Alzheimer's disease pathology. Compound [11C]-2 was selected as a clinical candidate based on its high free fraction in the brain, specific binding in the HD mouse model, and rapid brain uptake/washout in nonhuman primate positron emission tomography imaging studies.


Asunto(s)
Encéfalo/diagnóstico por imagen , Compuestos Heterocíclicos con 3 Anillos/química , Proteína Huntingtina/metabolismo , Agregado de Proteínas/fisiología , Piridinas/química , Radiofármacos/química , Enfermedad de Alzheimer , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Radioisótopos de Carbono/química , Femenino , Compuestos Heterocíclicos con 3 Anillos/síntesis química , Compuestos Heterocíclicos con 3 Anillos/farmacocinética , Humanos , Macaca fascicularis , Masculino , Ratones Endogámicos C57BL , Estructura Molecular , Tomografía de Emisión de Positrones , Piridinas/síntesis química , Piridinas/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Ratas Sprague-Dawley , Relación Estructura-Actividad
17.
Emerg Infect Dis ; 27(9): 2454-2458, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34193339

RESUMEN

Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.


Asunto(s)
COVID-19 , Formación de Anticuerpos , COVID-19/inmunología , Prueba Serológica para COVID-19 , Humanos , Nasofaringe , SARS-CoV-2 , Seroconversión
18.
Science ; 373(6551): 223-225, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244415

RESUMEN

Basal metabolic rate generally scales with body mass in mammals, and variation from predicted levels indicates adaptive metabolic remodeling. As a thermogenic adaptation for living in cool water, sea otters have a basal metabolic rate approximately three times that of the predicted rate; however, the tissue-level source of this hypermetabolism is unknown. Because skeletal muscle is a major determinant of whole-body metabolism, we characterized respiratory capacity and thermogenic leak in sea otter muscle. Compared with that of previously sampled mammals, thermogenic muscle leak capacity was elevated and could account for sea otter hypermetabolism. Muscle respiratory capacity was modestly elevated and reached adult levels in neonates. Premature metabolic development and high leak rate indicate that sea otter muscle metabolism is regulated by thermogenic demand and is the source of basal hypermetabolism.


Asunto(s)
Músculo Esquelético/fisiología , Nutrias/fisiología , Termogénesis , Envejecimiento , Animales , Animales Recién Nacidos/fisiología , Metabolismo Basal , Tamaño Corporal , Frío , Músculo Esquelético/metabolismo , Nutrias/metabolismo , Consumo de Oxígeno
19.
Explor Med ; 2: 110-121, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34263257

RESUMEN

AIMS: Reduced pre-operative cognitive functioning in older adults is a risk factor for postoperative complications, but it is unknown if preoperative digitally-acquired clock drawing test (CDT) cognitive screening variables, which allow for more nuanced examination of patient performance, may predict lengthier hospital stay and greater cost of hospital care. This issue is particularly relevant for older adults undergoing transcatheter aortic valve replacement (TAVR), as this surgical procedure is chosen for intermediate-risk older adults needing aortic replacement. This proof of concept research explored if specific latency and graphomotor variables indicative of planning from digitally-acquired command and copy clock drawing would predict post-TAVR duration and cost of hospitalization, over and above age, education, American Society of Anesthesiologists (ASA) physical status classification score, and frailty. METHODS: Form January 2018 to December 2019, 162 out of 190 individuals electing TAVR completed digital clock drawing as part of a hospital wide cognitive screening program. Separate hierarchical regressions were computed for the command and copy conditions of the CDT and assessed how a-priori selected clock drawing metrics (total time to completion, ideal digit placement difference, and hour hand distance from center; included within the same block) incrementally predicted outcome, as measured by R2 change significance values. RESULTS: Above and beyond age, education, ASA physical status classification score, and frailty, only digitally-acquired CDT copy performance explained significant variance for length of hospital stay (9.5%) and cost of care (8.9%). CONCLUSIONS: Digital variables from clock copy condition provided predictive value over common demographic and comorbidity variables. We hypothesize this is due to the sensitivity of the copy condition to executive dysfunction, as has been shown in previous studies for subtypes of cognitive impairment. Individuals undergoing TAVR procedures are often frail and executively compromised due to their cerebrovascular disease. We encourage additional research on the value of digitally-acquired clock drawing within different surgery types. Type of cognitive impairment and the value of digitally-acquired CDT command and copy parameters in other surgeries remain unknown.

20.
J Alzheimers Dis ; 82(1): 59-70, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34219739

RESUMEN

BACKGROUND: Relative to the abundance of publications on dementia and clock drawing, there is limited literature operationalizing 'normal' clock production. OBJECTIVE: To operationalize subtle behavioral patterns seen in normal digital clock drawing to command and copy conditions. METHODS: From two research cohorts of cognitively-well participants age 55 plus who completed digital clock drawing to command and copy conditions (n = 430), we examined variables operationalizing clock face construction, digit placement, clock hand construction, and a variety of time-based, latency measures. Data are stratified by age, education, handedness, and number anchoring. RESULTS: Normative data are provided in supplementary tables. Typical errors reported in clock research with dementia were largely absent. Adults age 55 plus produce symmetric clock faces with one stroke, with minimal overshoot and digit misplacement, and hands with expected hour hand to minute hand ratio. Data suggest digitally acquired graphomotor and latency differences based on handedness, age, education, and anchoring. CONCLUSION: Data provide useful benchmarks from which to assess digital clock drawing performance in Alzheimer's disease and related dementias.


Asunto(s)
Benchmarking , Pruebas Neuropsicológicas , Anciano , Cognición , Femenino , Humanos , Masculino , Tiempo de Reacción , Escritura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...