RESUMEN
The New World Screwworm fly, Cochliomyia hominivorax, is a major pest of livestock in South America and Caribbean. However, few genomic resources have been available for this species. A genome of 534 Mb was assembled from long read PacBio DNA sequencing of DNA from a highly inbred strain. Analysis of molecular evolution identified 40 genes that are likely under positive selection. Developmental RNA-seq analysis identified specific genes associated with each stage. We identify and analyze the expression of genes that are likely important for host-seeking behavior (chemosensory), development of larvae in open wounds in warm-blooded animals (heat shock protein, immune response) and for building transgenic strains for genetic control programs including gene drive (sex determination, germline). This study will underpin future experiments aimed at understanding the parasitic lifestyle of the screwworm fly and greatly facilitate future development of strains for efficient systems for genetic control of screwworm.
Asunto(s)
Calliphoridae/genética , Evolución Molecular , Ganado/genética , Infección por Gusano Barrenador/genética , Animales , Calliphoridae/patogenicidad , Regulación de la Expresión Génica/genética , Genómica/métodos , Interacciones Huésped-Parásitos/genética , Larva/genética , Larva/crecimiento & desarrollo , Ganado/parasitología , Control Biológico de Vectores , RNA-Seq , Infección por Gusano Barrenador/parasitología , América del SurRESUMEN
A convenient and broadly applicable method for the hydrohalogenation of ynones is described, by the combination of halotrimethylsilanes and tetrafluoroboric acid. Practically, one equivalent of HX (Brønsted acid) and BF3 (Lewis acid) is smoothly generated, which activates the carbonyl compounds. Through this protocol, 42 examples of (Z)-ß-halovinyl carbonyl compounds (Cl, Br and I) were obtained, in good yields and high stereoselectivity having 2-MeTHF as a solvent.
RESUMEN
OBJECTIVE: To examine the impact of fasting and glucose tolerance on selected metabolic variables in children with spinal muscular atrophy (SMA) type II in a well state, secondary to reports of glucose regulation abnormalities in SMA. STUDY DESIGN: In this prospective pilot study, 6 children aged 7-11 years with SMA type II participated in an oral glucose tolerance test and a supervised medical fast during 2 overnight visits at the University of Utah. At baseline, a dual-energy x-ray absorptiometry scan was performed to determine body composition. Laboratory test results were obtained at baseline and in response to the respective interventions. Data analysis was descriptive. Prefasting and postfasting data were evaluated using the Wilcoxon signed-rank test. RESULTS: Based on the dual-energy x-ray absorptiometry scan, all 6 children were variably obese at baseline. All 6 exhibited hyperinsulinemia, and 3 of 6 met formal American Diabetes Association criteria for impaired glucose tolerance. According to homeostatic insulin resistance calculations, 5 of the 6 participants were insulin-resistant. All 6 participants tolerated a monitored fast for 20 hours without hypoglycemia (blood glucose <54 mg/dL). Free fatty acid levels increased significantly from prefasting to postfasting, whereas levels of several plasma amino acids decreased significantly during fasting. CONCLUSION: Children with SMA type II defined as obese using objective variables are at increased risk for impaired glucose tolerance regardless of whether or not they visually appear obese. Further studies are needed to determine the prevalence of impaired glucose tolerance and tolerance for fasting within the broader heterogeneous SMA population and to develop appropriate guidelines for intervention.