Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 13(22)2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37998567

RESUMEN

This paper presents a technique for high sensitivity measurement of singlet oxygen luminescence generated during photodynamic therapy (PDT) and ultraviolet (UV) irradiation on skin. The high measurement sensitivity is achieved by using a computational spectroscopy (CS) approach that provides improved photon detection efficiency compared to spectral filtering methodology. A solid-state InGaAs photodiode is used as the CS detector, which significantly reduces system cost and improves robustness compared to photomultiplier tubes. The spectral resolution enables high-accuracy determination and subtraction of photosensitizer fluorescence baseline without the need for time-gating. This allows for high sensitivity detection of singlet oxygen luminescence emission generated by continuous wave light sources, such as solar simulator sources and those commonly used in PDT clinics. The value of the technology is demonstrated during in vivo and ex vivo experiments that show the correlation of measured singlet oxygen with PDT treatment efficacy and the illumination intensity on the skin. These results demonstrate the potential use of the technology as a dosimeter to guide PDT treatment and as an analytical tool supporting the development of improved sunscreen products for skin cancer prevention.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA