Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 7285, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142645

RESUMEN

Finding alignments between millions of reads and genome sequences is crucial in computational biology. Since the standard alignment algorithm has a large computational cost, heuristics have been developed to speed up this task. Though orders of magnitude faster, these methods lack theoretical guarantees and often have low sensitivity especially when reads have many insertions, deletions, and mismatches relative to the genome. Here we develop a theoretically principled and efficient algorithm that has high sensitivity across a wide range of insertion, deletion, and mutation rates. We frame sequence alignment as an inference problem in a probabilistic model. Given a reference database of reads and a query read, we find the match that maximizes a log-likelihood ratio of a reference read and query read being generated jointly from a probabilistic model versus independent models. The brute force solution to this problem computes joint and independent probabilities between each query and reference pair, and its complexity grows linearly with database size. We introduce a bucketing strategy where reads with higher log-likelihood ratio are mapped to the same bucket with high probability. Experimental results show that our method is more accurate than the state-of-the-art approaches in aligning long-reads from Pacific Bioscience sequencers to genome sequences.


Asunto(s)
Algoritmos , Genoma , Alineación de Secuencia , Biología Computacional/métodos , Probabilidad , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...