Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Sens ; 9(4): 1857-1865, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38597428

RESUMEN

Resonant photonic refractive index sensors have made major advances based on their high sensitivity and contact-less readout capability, which is advantageous in many areas of science and technology. A major issue for the technological implementation of such sensors is their response to external influences, such as vibrations and temperature variations; the more sensitive a sensor, the more susceptible it also becomes to external influences. Here, we introduce a novel bowtie-shaped sensor that is highly responsive to refractive index variations while compensating for temperature changes and mechanical (linear and angular) vibrations. We exemplify its capability by demonstrating the detection of salinity to a precision of 0.1%, corresponding to 2.3 × 10-4 refractive index units in the presence of temperature fluctuations and mechanical vibrations. As a second exemplar, we detected bacteria growth in a pilot industrial environment. Our results demonstrate that it is possible to translate high sensitivity resonant photonic refractive index sensors into real-world environments.


Asunto(s)
Fotones , Refractometría , Temperatura , Vibración , Salinidad
2.
JAC Antimicrob Resist ; 5(6): dlad135, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38098890

RESUMEN

Background: Antibody-deficient patients are at high risk of respiratory tract infections. Many therefore receive antibiotic prophylaxis and have access to antibiotics for self-administration in the event of breakthrough infections, which may increase antimicrobial resistance (AMR). Objectives: To understand AMR in the respiratory tract of patients with antibody deficiency. Methods: Sputum samples were collected from antibody-deficient patients in a cross-sectional and prospective study; bacteriology culture, 16S rRNA profiling and PCR detecting macrolide resistance genes were performed. Bacterial isolates were identified using MALDI-TOF, antimicrobial susceptibility was determined by disc diffusion and WGS of selected isolates was done using Illumina NextSeq with analysis for resistome and potential cross-transmission. Neutrophil elastase was measured by a ProteaseTag immunoassay. Results: Three hundred and forty-three bacterial isolates from sputum of 43 patients were tested. Macrolide and tetracycline resistance were common (82% and 35% of isolates). erm(B) and mef(A) were the most frequent determinants of macrolide resistance. WGS revealed viridans streptococci as the source of AMR genes, of which 23% also carried conjugative plasmids linked with AMR genes and other mobile genetic elements. Phylogenetic analysis of Haemophilus influenzae isolates suggested possible transmission between patients attending clinic.In the prospective study, a negative correlation between sputum neutrophil elastase concentration and Shannon entropy α-diversity (Spearman's ρ = -0.306, P = 0.005) and a positive relationship with Berger-Parker dominance index (ρ = 0.502, P < 0.001) were found. Similar relationships were noted for the change in elastase concentration between consecutive samples, increases in elastase associating with reduced α-diversity. Conclusions: Measures to limit antibiotic usage and spread of AMR should be implemented in immunodeficiency clinics. Sputum neutrophil elastase may be a useful marker to guide use of antibiotics for respiratory infection.

3.
Artículo en Inglés | MEDLINE | ID: mdl-36360970

RESUMEN

Peri-implantitis is a disease influenced by dysbiotic microbial communities that play a role in the short- and long-term outcomes of its clinical treatment. The ecological triggers that establish the progression from peri-implant mucositis to peri-implantitis remain unknown. This investigation describes the development of a novel in vitro microcosm biofilm model. Biofilms were grown over 30 days over machined titanium discs in a constant depth film fermentor (CDFF), which was inoculated (I) with pooled human saliva. Following longitudinal biofilm sampling across peri-implant health (PH), peri-implant mucositis (PM), and peri-implantitis (PI) conditions, the characterisation of the biofilms was performed. The biofilm analyses included imaging by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), selective and non-selective culture media of viable biofilms, and 16S rRNA gene amplification and sequencing. Bacterial qualitative shifts were observed by CLSM and SEM across conditions, which were defined by characteristic phenotypes. A total of 9 phyla, 83 genera, and 156 species were identified throughout the experiment. The phyla Proteobacteria, Bacteroidetes, Firmicutes, Fusobacteria, and Actinobacteria showed the highest prevalence in PI conditions. This novel in vitro microcosm model provides a high-throughput alternative for growing microcosm biofilms resembling an in vitro progression from PH-PM-PI conditions.


Asunto(s)
Microbiota , Mucositis , Periimplantitis , Humanos , Periimplantitis/microbiología , ARN Ribosómico 16S/genética , Biopelículas , Microbiota/genética , Bacterias/genética
4.
J Allergy Clin Immunol ; 149(6): 2105-2115.e10, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34968528

RESUMEN

BACKGROUND: Patients with antibody deficiency suffer chronic respiratory symptoms, recurrent exacerbations, and progressive airways disease despite systemic replacement of IgG. Little is known about the respiratory tract biology of these patients. OBJECTIVE: We sought to measure immunoglobulin levels, inflammatory cytokines, and mediators of tissue damage in serum and sputum from patients with antibody deficiency and healthy controls; to analyze the respiratory microbiome in the same cohorts. METHODS: We obtained paired sputum and serum samples from 31 immunocompetent subjects and 67 antibody-deficient patients, the latter divided on computed tomography scan appearance into "abnormal airways" (bronchiectasis or airway thickening) or "normal airways." We measured inflammatory cytokines, immunoglobulin levels, neutrophil elastase, matrix-metalloproteinase-9, urea, albumin, and total protein levels using standard assays. We used V3-V4 region 16S sequencing for microbiome analysis. RESULTS: Immunodeficient patients had markedly reduced IgA in sputum but higher concentrations of IgG compared with healthy controls. Inflammatory cytokines and tissue damage markers were higher in immunodeficient patients, who also exhibited dysbiosis with overrepresentation of pathogenic taxa and significantly reduced alpha diversity compared with immunocompetent individuals. These differences were seen regardless of airway morphology. Sputum matrix-metalloproteinase-9 and elastase correlated inversely with alpha diversity in the antibody-deficient group, as did sputum IgG, which correlated positively with several inflammatory markers, even after correction for albumin levels. CONCLUSIONS: Patients with antibody deficiency, even with normal lung imaging, exhibit inflammation and dysbiosis in their airways despite higher levels of IgG compared with healthy controls.


Asunto(s)
Síndromes de Inmunodeficiencia , Enfermedades de Inmunodeficiencia Primaria , Albúminas/análisis , Biomarcadores , Citocinas , Disbiosis , Humanos , Inmunoglobulina G , Inflamación , Sistema Respiratorio , Esputo
5.
J Clin Immunol ; 42(2): 312-324, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731398

RESUMEN

PURPOSE: Chronic granulomatous disorder (CGD) is a primary immunodeficiency which is frequently complicated by inflammatory colitis and is associated with systemic inflammation. Herein, we aimed to investigate the role of the microbiome in the pathogenesis of colitis and systemic inflammation. METHODS: We performed 16S rDNA sequencing on mucosal biopsy samples from each segment of 10 CGD patients' colons and conducted compositional and functional pathway prediction analyses. RESULTS: The microbiota in samples from colitis patients demonstrated reduced taxonomic alpha-diversity compared to unaffected patients, even in apparently normal bowel segments. Functional pathway richness was similar between the colitic and non-colitic mucosa, although metabolic pathways involved in butyrate biosynthesis or utilization were enriched in patients with colitis and correlated positively with fecal calprotectin levels. One patient with very severe colitis was dominated by Enterococcus spp., while among other patients Bacteroides spp. abundance correlated with colitis severity measured by fecal calprotectin and an endoscopic severity score. In contrast, Blautia abundance is associated with low severity scores and mucosal health. Several taxa and functional pathways correlated with concentrations of inflammatory cytokines in blood but not with colitis severity. Notably, dividing patients into "high" and "low" systemic inflammation groups demonstrated clearer separation than on the basis of colitis status in beta-diversity analyses. CONCLUSION: The microbiome is abnormal in CGD-associated colitis and altered functional characteristics probably contribute to pathogenesis. Furthermore, the relationship between the mucosal microbiome and systemic inflammation, independent of colitis status, implies that the microbiome in CGD can influence the inflammatory phenotype of the condition.


Asunto(s)
Colitis , Enfermedad Granulomatosa Crónica , Microbiota , Colitis/etiología , Colitis/metabolismo , Enfermedad Granulomatosa Crónica/complicaciones , Enfermedad Granulomatosa Crónica/diagnóstico , Humanos , Inflamación/complicaciones , Membrana Mucosa/metabolismo , Membrana Mucosa/patología
6.
J Clin Periodontol ; 47(8): 980-990, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32557763

RESUMEN

AIMS: The primary aim of this investigation was to analyse the periodontal microbiome in patients with aggressive periodontitis (AgP) following treatment. METHODS: Sixty-six AgP patients were recalled on average 7 years after completion of active periodontal treatment and had subgingival plaque samples collected and processed for 16S rRNA gene sequencing analyses. RESULTS: Of 66 participants, 52 showed persistent periodontal disease, while 13 participants were considered as "successfully treated AgP" (no probing pocket depths >4 mm) and 1 was fully edentulous. Genera associated with persistent generalized disease included Actinomyces, Alloprevotella, Capnocytophaga, Filifactor, Fretibacterium, Fusobacterium, Leptotrichia, Mogibacterium, Saccharibacteria [G-1], Selenomonas and Treponema. "Successfully treated" patients harboured higher proportions of Haemophilus, Rothia, and Lautropia and of Corynebacterium, Streptococcus and Peptidiphaga genera. Overall, patients with persistent generalized AgP (GAgP) revealed higher alpha diversity compared to persistent localized AgP (LAgP) and stable patients (p < .001). Beta diversity analyses revealed significant differences only between stable and persistent GAgP groups (p = .004). CONCLUSION: Patients with persistent AgP showed a more dysbiotic subgingival biofilm than those who have been successfully treated. It remains to be established whether such differences were predisposing to disease activity or were a result of a dysbiotic change associated with disease recurrence in the presence of sub-standard supportive periodontal therapy or other patient-related factors.


Asunto(s)
Periodontitis Agresiva , Placa Dental , Microbiota , Periodontitis Agresiva/terapia , Bacterias/genética , Humanos , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA