Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(41): 37769-37780, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867722

RESUMEN

Nanocomposites based on thermoplastic polyurethanes (TPUs) filled with halloysite nanotubes (HNTs) were studied for their physicochemical and biological properties. Nanocomposites containing halloysite nanotube filler contents of 1 and 2% (E+1 and E+2), respectively, were obtained by extrusion. The newly formed E+1 and E+2 nanomaterials exhibited better flexibility and similar thermal properties compared to neat polyurethane. The use of atomic force microscopy (AFM) and differential scanning calorimetry (DSC) thermogram analysis showed that the distribution of halloysite nanotubes in the polymer matrix is more evenly dispersed in the E+1 nanomaterial, where the grains in the E+2 nanomaterial have a greater tendency to form agglomerates. Mechanical tests have shown that nanocomposites with the addition of HNT are characterized by a higher stress at break and elongation at break compared to neat TPU. The results of cytotoxicity tests suggest that the nanocomposite materials express lower toxicity to normal HaCaT and NHDF than to cancer Me45 cells. Further studies showed that the tested materials induced the expression of proinflammatory interleukins IL6 and IL8 in normal cells, but their overexpression in the cancer cell line resulted in cytostatic effects and proliferation reduction. Such a conclusion suggests the possible application of tested materials for regenerative therapies in cancer surgeries.

2.
Pharmaceuticals (Basel) ; 16(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37111282

RESUMEN

The pharmacological effects of the presence of a sugar moiety, 1,2,3-triazole ring and silyl groups in the structure of biologically active compounds have been extensively studied in drug design and medicinal chemistry. These components can be useful tools to tailoring the bioavailability of target molecules. Herein we present the study on the impact of the sugar substituent structure and triisopropylsilyl group presence on the anticancer activity of mucochloric acid (MCA) derivatives containing the furan-2(5H)-one or 2H-pyrrol-2-one core. The obtained results clearly indicated that tested compounds caused a significant decrease in cell viability of HCT116 and MCF-7 cell lines. MCF-7 cells indicate serious resistance toward investigated compounds in comparison with HCT116 cell line, it suggests that estrogen-dependent breast cancer cells are significantly less sensitive to the tested derivatives. Depending on the structure of the sugar, the type and site of connection with the furanone or 2H-pyrrol-2-one derivative and the presence of the silyl group, the selectivity of the compound towards cancer cells can be controlled. The obtained results may have an impact on the design of new furanone-based anticancer compounds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA