Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
J Med Toxicol ; 12(2): 165-71, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26553277

RESUMEN

Intravenous lipid emulsion (ILE), a component of parenteral nutrition, consists of a fat emulsion of soy bean oil, egg phospholipids, and glycerin. Case reports suggest that ILE may reverse hypotension caused by acute poisoning with lipophilic drugs such as verapamil, but the mechanism remains unclear. The methods used are the following: (1) measurement of ILE concentration in serum samples from a patient with verapamil poisoning treated with ILE, (2) measurement of free verapamil concentrations in human serum mixed in vitro with increasing concentrations of ILE, and (3) measurement of murine ventricular cardiomyocyte L-type Ca(2+) currents, intracellular Ca(2+), and contractility in response to verapamil and/or ILE. Maximum patient serum ILE concentration after infusion of 1 L ILE over 1 h was approximately 1.6 vol%. In vitro GC/MS verapamil assays showed that addition of ILE (0.03-5.0 vol%) dose-dependently decreased the free verapamil concentration in human serum. In voltage-clamped myocytes, adding ILE to Tyrode's solution containing 5 µM verapamil recovered L-type Ca(2+) currents (ICa). Recovery was concentration dependent, with significant ICa recovery at ILE concentrations as low as 0.03 vol%. ILE had no effect on ICa in the absence of verapamil. In field-stimulated intact ventricular myocytes exposed to verapamil, adding ILE (0.5 %) resulted in a rapid and nearly complete recovery of myocyte contractility and intracellular Ca(2+). Our in vitro studies indicate that ILE acts as a lipid sink that rapidly reverses impaired cardiomyocyte contractility in the continued presence of verapamil.


Asunto(s)
Bloqueadores de los Canales de Calcio/química , Emulsiones Grasas Intravenosas/química , Triglicéridos/química , Verapamilo/antagonistas & inhibidores , Absorción Fisicoquímica , Animales , Bloqueadores de los Canales de Calcio/sangre , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/envenenamiento , Señalización del Calcio/efectos de los fármacos , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Células Cultivadas , Sobredosis de Droga/sangre , Sobredosis de Droga/fisiopatología , Sobredosis de Droga/terapia , Emulsiones Grasas Intravenosas/análisis , Emulsiones Grasas Intravenosas/uso terapéutico , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Hipotensión/etiología , Hipotensión/prevención & control , Cinética , Ratones Endogámicos C57BL , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Placa-Clamp , Prueba de Estudio Conceptual , Toxicocinética , Triglicéridos/análisis , Triglicéridos/sangre , Verapamilo/sangre , Verapamilo/farmacología , Verapamilo/envenenamiento
3.
J Anal Toxicol ; 37(6): 376-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23711948

RESUMEN

A presumed hook effect in the semiquantitative DRI Oxycodone immunoassay, OXY3S (Cobas Integra, Roche Diagnostics), was investigated in 14 urine samples with gas chromatography/mass spectrometry (GC-MS) >10,000 ng/mL but OXY3S <1,000 ng/mL. These samples included the index case, a false-negative OXY3S result with >75,000 ng/mL oxycodone + oxymorphone by GC-MS confirmation. Patient samples needed 2- to 16-fold dilution to obtain the correct OXY3S response. The OXY3S test did not hook at high-spiked concentrations of oxycodone, oxymorphone or oxymorphone-3ß-d-glucuronide in drug-free urine. The OXY3S test parameters were replicated in a development channel on the Cobas using DRI Reagents (Microgenics, CA, USA) and were subsequently modified. Delayed sample addition or doubling of Reagent 1 (R1: antibody/substrate/co-factor) yielded maximal immunoassay response (>10,000 ng/mL) in 12 of 14 and 14 of 14 undiluted patient samples, respectively. Supplementation of R1 with substrate alone did not correctly recover oxycodone from any of the samples, while co-factor supplementation resulted a maximal OXY3S response in 13 of 14 samples. The remaining (index) sample could only be corrected by supplemental R1. The semiquantitative utility of the DRI Oxycodone assay is questionable. Although the precise cause of the under-recovery could not be determined, the modification presented permits reliable oxycodone determination at the high concentrations frequently seen in clinical urine samples.


Asunto(s)
Inmunoensayo/métodos , Oxicodona/orina , Adulto , Anciano , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Masculino , Persona de Mediana Edad , Oximorfona/orina , Manejo de Especímenes , Detección de Abuso de Sustancias/métodos
4.
J Pediatr ; 163(3): 855-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23582137

RESUMEN

OBJECTIVE: To facilitate further assessment of transfusion-associated lead exposure by designing a procedure to test packed red blood cells (pRBCs) prepared for transfusion. STUDY DESIGN: The relationship between pRBCs and whole blood lead concentration was investigated in 27 samples using a modified clinical assay. Lead concentrations were measured in 100 pRBC units. RESULTS: Our sample preparation method demonstrated a correlation between whole blood lead and pRBC lead concentrations (R(2) = 0.82). In addition, all 100 pRBC units tested had detectable lead levels. The median pRBC lead concentration was 0.8 µg/dL, with an SD of 0.8 µg/dL and a range of 0.2-4.1 µg/dL. In addition, after only a few days of storage, approximately 25% of whole blood lead was found in the supernatant plasma. CONCLUSION: Transfusion of pRBCs is a source of lead exposure. Here we report the quantification of lead concentration in pRBCs. We found a >20-fold range of lead concentrations in the samples tested. Pretransfusion testing of pRBC units according to our proposed approach or donor screening of whole blood lead and selection of below-average units for transfusion to children would diminish an easily overlooked source of pediatric lead exposure.


Asunto(s)
Seguridad de la Sangre/métodos , Contaminantes Ambientales/sangre , Transfusión de Eritrocitos/efectos adversos , Intoxicación del Sistema Nervioso por Plomo en la Infancia/prevención & control , Plomo/sangre , Eritrocitos/química , Humanos , Intoxicación del Sistema Nervioso por Plomo en la Infancia/etiología , Espectrometría de Masas , Plasma/química
5.
Cancer Epidemiol Biomarkers Prev ; 20(7): 1502-15, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21610218

RESUMEN

BACKGROUND: Current models of breast cancer risk prediction do not directly reflect mammary estrogen metabolism or genetic variability in exposure to carcinogenic estrogen metabolites. METHODS: We developed a model that simulates the kinetic effect of genetic variants of the enzymes CYP1A1, CYP1B1, and COMT on the production of the main carcinogenic estrogen metabolite, 4-hydroxyestradiol (4-OHE(2)), expressed as area under the curve metric (4-OHE(2)-AUC). The model also incorporates phenotypic factors (age, body mass index, hormone replacement therapy, oral contraceptives, and family history), which plausibly influence estrogen metabolism and the production of 4-OHE(2). We applied the model to two independent, population-based breast cancer case-control groups, the German GENICA study (967 cases, 971 controls) and the Nashville Breast Cohort (NBC; 465 cases, 885 controls). RESULTS: In the GENICA study, premenopausal women at the 90th percentile of 4-OHE(2)-AUC among control subjects had a risk of breast cancer that was 2.30 times that of women at the 10th control 4-OHE(2)-AUC percentile (95% CI: 1.7-3.2, P = 2.9 × 10(-7)). This relative risk was 1.89 (95% CI: 1.5-2.4, P = 2.2 × 10(-8)) in postmenopausal women. In the NBC, this relative risk in postmenopausal women was 1.81 (95% CI: 1.3-2.6, P = 7.6 × 10(-4)), which increased to 1.83 (95% CI: 1.4-2.3, P = 9.5 × 10(-7)) when a history of proliferative breast disease was included in the model. CONCLUSIONS: The model combines genotypic and phenotypic factors involved in carcinogenic estrogen metabolite production and cumulative estrogen exposure to predict breast cancer risk. IMPACT: The estrogen carcinogenesis-based model has the potential to provide personalized risk estimates.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Estrógenos/metabolismo , Predisposición Genética a la Enfermedad , Modelos Teóricos , Adulto , Algoritmos , Área Bajo la Curva , Hidrocarburo de Aril Hidroxilasas/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1B1 , Estradiol/análogos & derivados , Estradiol/biosíntesis , Estrógenos de Catecol , Femenino , Genotipo , Humanos , Persona de Mediana Edad , Fenotipo , Factores de Riesgo
6.
Ann N Y Acad Sci ; 1155: 68-75, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19250193

RESUMEN

Oxidative metabolites of estrogens have been implicated in the development of breast cancer, yet relatively little is known about the metabolism of estrogens in the normal breast. We developed an experimental in vitro model of mammary estrogen metabolism in which we combined purified, recombinant phase I enzymes CYP1A1 and CYP1B1 with the phase II enzymes COMT and GSTP1 to determine how 17beta-estradiol (E(2)) is metabolized. We employed both gas and liquid chromatography with mass spectrometry to measure the parent hormone E(2) as well as eight metabolites, that is, the catechol estrogens, methoxyestrogens, and estrogen-GSH conjugates. We used these experimental data to develop an in silico model, which allowed the kinetic simulation of converting E(2) into eight metabolites. The simulations showed excellent agreement with experimental results and provided a quantitative assessment of the metabolic interactions. Using rate constants of genetic variants of CYP1A1, CYP1B1, and COMT, the model further allowed examination of the kinetic impact of enzyme polymorphisms on the entire metabolic pathway, including the identification of those haplotypes producing the largest amounts of catechols and quinones. Application of the model to a breast cancer case-control population defined the estrogen quinone E(2)-3,4-Q as a potential risk factor and identified a subset of women with an increased risk of breast cancer based on their enzyme haplotypes and consequent E(2)-3,4-Q production. Our in silico model integrates diverse types of data and offers the exciting opportunity for researchers to combine metabolic and genetic data in assessing estrogenic exposure in relation to breast cancer risk.


Asunto(s)
Neoplasias de la Mama/metabolismo , Estrógenos/metabolismo , Mama/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Cromatografía de Gases , Cromatografía Liquida , Femenino , Humanos , Espectrometría de Masas , Factores de Riesgo
7.
Diabetes ; 57(9): 2453-60, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18567822

RESUMEN

OBJECTIVE: Hypoglycemia commonly occurs in intensively-treated diabetic patients. Repeated hypoglycemia blunts counterregulatory responses, thereby increasing the risk for further hypoglycemic events. Currently, physiologic approaches to augment counterregulatory responses to hypoglycemia have not been established. Therefore, the specific aim of this study was to test the hypothesis that 6 weeks' administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine would amplify autonomic nervous system (ANS) and neuroendocrine counterregulatory mechanisms during hypoglycemia. RESEARCH DESIGN AND METHODS: A total of 20 healthy (10 male and 10 female) subjects participated in an initial single-step hyperinsulinemic (9 pmol . kg(-1) . min(-1))-hypoglycemic (means +/- SE 2.9 +/- 0.1 mmol/l) clamp study and were then randomized to receive 6 weeks' administration of fluoxetine (n = 14) or identical placebo (n = 6) in a double-blind fashion. After 6 weeks, subjects returned for a second hypoglycemic clamp. Glucose kinetics were determined by three-tritiated glucose, and muscle sympathetic nerve activity (MSNA) was measured by microneurography. RESULTS: Despite identical hypoglycemia (2.9 +/- 0.1 mmol/l) and insulinemia during all clamp studies, key ANS (epinephrine, norepinephrine, and MSNA but not symptoms), neuroendocrine (cortisol), and metabolic (endogenous glucose production, glycogenolysis, and lipolysis) responses were increased (P < 0.01) following fluoxetine. CONCLUSIONS: This study demonstrated that 6 weeks' administration of the SSRI fluoxetine can amplify a wide spectrum of ANS and metabolic counterregulatory responses during hypoglycemia in healthy individuals. These data further suggest that serotonergic transmission may be an important mechanism in modulating sympathetic nervous system drive during hypoglycemia in healthy individuals.


Asunto(s)
Sistema Nervioso Autónomo/efectos de los fármacos , Fluoxetina/administración & dosificación , Hipoglucemia/tratamiento farmacológico , Sistemas Neurosecretores/efectos de los fármacos , Inhibidores Selectivos de la Recaptación de Serotonina/administración & dosificación , Ácido 3-Hidroxibutírico/sangre , Adulto , Alanina/sangre , Sistema Nervioso Autónomo/fisiología , Glucemia/metabolismo , Presión Sanguínea/efectos de los fármacos , Ácidos Grasos no Esterificados/sangre , Femenino , Fluoxetina/sangre , Técnica de Clampeo de la Glucosa , Glicerol/sangre , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Hipoglucemia/fisiopatología , Insulina/sangre , Ácido Láctico/sangre , Masculino , Músculo Esquelético/inervación , Sistemas Neurosecretores/fisiología , Inhibidores Selectivos de la Recaptación de Serotonina/sangre
8.
Cancer Res ; 67(2): 812-7, 2007 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-17234793

RESUMEN

The oxidative metabolism of estrogens has been implicated in the development of breast cancer; yet, relatively little is known about the mechanism by which estrogens cause DNA damage and thereby initiate mammary carcinogenesis. To determine how the metabolism of the parent hormone 17beta-estradiol (E2) leads to the formation of DNA adducts, we used the recombinant, purified phase I enzyme, cytochrome P450 1B1 (CYP1B1), which is expressed in breast tissue, to oxidize E2 in the presence of 2'-deoxyguanosine or 2'-deoxyadenosine. We used both gas and liquid chromatography with tandem mass spectrometry to measure E2, the 2- and 4-catechol estrogens (2-OHE2, 4-OHE2), and the depurinating adducts 4-OHE(2)-1(alpha,beta)-N7-guanine (4-OHE2-N7-Gua) and 4-OHE(2)-1(alpha,beta)-N3-adenine (4-OHE2-N3-Ade). CYP1B1 oxidized E2 to the catechol 4-OHE2 and the labile quinone 4-hydroxyestradiol-quinone to produce 4-OHE2-N7-Gua and 4-OHE2-N3-Ade in a time- and concentration-dependent manner. Because the reactive quinones were produced as part of the CYP1B1-mediated oxidation reaction, the adduct formation followed Michaelis-Menten kinetics. Under the conditions of the assay, the 4-OHE2-N7-Gua adduct (Km, 4.6+/-0.7 micromol/L; kcat, 45+/-1.6/h) was produced 1.5 times more efficiently than the 4-OHE2-N3-Ade adduct (Km, 4.6+/-1.0 micromol/L; kcat, 30+/-1.5/h). The production of adducts was two to three orders of magnitude lower than the 4-OHE2 production. The results present direct proof of CYP1B1-mediated, E2-induced adduct formation and provide the experimental basis for future studies of estrogen carcinogenesis.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Desoxiadenosinas/metabolismo , Desoxiguanosina/metabolismo , Estradiol/metabolismo , Citocromo P-450 CYP1B1 , Aductos de ADN/metabolismo , Estrógenos de Catecol/metabolismo , Cinética , Proteínas Recombinantes/metabolismo
9.
Cancer Epidemiol Biomarkers Prev ; 15(9): 1620-9, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16985022

RESUMEN

Oxidative metabolites of estrogens have been implicated in the development of breast cancer, yet relatively little is known about the metabolism of estrogens in the normal breast. We developed a mathematical model of mammary estrogen metabolism based on the conversion of 17beta-estradiol (E(2)) by the enzymes cytochrome P450 (CYP) 1A1 and CYP1B1, catechol-O-methyltransferase (COMT), and glutathione S-transferase P1 into eight metabolites [i.e., two catechol estrogens, 2-hydroxyestradiol (2-OHE(2)) and 4-hydroxyestradiol (4-OHE(2)); three methoxyestrogens, 2-methoxyestradiol, 2-hydroxy-3-methoxyestradiol, and 4-methoxyestradiol; and three glutathione (SG)-estrogen conjugates, 2-OHE(2)-1-SG, 2-OHE(2)-4-SG, and 4-OHE(2)-2-SG]. When used with experimentally determined rate constants with purified enzymes, the model provides for a kinetic analysis of the entire metabolic pathway. The predicted concentration of each metabolite during a 30-minute reaction agreed well with the experimentally derived results. The model also enables simulation for the transient quinones, E(2)-2,3-quinone (E(2)-2,3-Q) and E(2)-3,4-quinone (E(2)-3,4-Q), which are not amenable to direct quantitation. Using experimentally derived rate constants for genetic variants of CYP1A1, CYP1B1, and COMT, we used the model to simulate the kinetic effect of enzyme polymorphisms on the pathway and identified those haplotypes generating the largest amounts of catechols and quinones. Application of the model to a breast cancer case-control population identified a subset of women with an increased risk of breast cancer based on their enzyme haplotypes and consequent E(2)-3,4-Q production. This in silico model integrates both kinetic and genomic data to yield a comprehensive view of estrogen metabolomics in the breast. The model offers the opportunity to combine metabolic, genetic, and lifetime exposure data in assessing estrogens as a breast cancer risk factor.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/genética , Neoplasias de la Mama/etiología , Catecol O-Metiltransferasa/genética , Citocromo P-450 CYP1A1/genética , Estrógenos/metabolismo , Área Bajo la Curva , Neoplasias de la Mama/metabolismo , Citocromo P-450 CYP1B1 , Femenino , Haplotipos , Humanos , Modelos Teóricos
10.
Crit Care Clin ; 21(4 Suppl): S1-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16227111

RESUMEN

Most often, urea cycle disorders have been described as acute onset hyperammonemia in the newborn period; however, there is a growing awareness that urea cycle disorders can present at almost any age, frequently in the critical care setting. This article presents three cases of adult-onset hyperammonemia caused by inherited defects in nitrogen processing in the urea cycle, and reviews the diagnosis, management, and pathophysiology of adult-onset urea cycle disorders. Individuals who have milder molecular urea cycle defects can lead a relatively normal life until a severe environmental stress triggers a hyperammonemic crisis. Comorbid conditions such as physical trauma often delay the diagnosis of the urea cycle defect. Prompt recognition and treatment are essential in determining the outcome of these patients.


Asunto(s)
Encefalopatías Metabólicas Innatas , Enfermedad Crítica , Hiperamonemia , Urea/metabolismo , Adulto , Edad de Inicio , Encefalopatías Metabólicas Innatas/diagnóstico , Encefalopatías Metabólicas Innatas/etiología , Encefalopatías Metabólicas Innatas/terapia , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/diagnóstico , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/etiología , Enfermedad por Deficiencia de Carbamoil-Fosfato Sintasa I/terapia , Urgencias Médicas , Femenino , Humanos , Hiperamonemia/diagnóstico , Hiperamonemia/etiología , Hiperamonemia/terapia , Masculino , Persona de Mediana Edad , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/etiología , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia , Factores Desencadenantes
11.
Chem Res Toxicol ; 17(9): 1258-64, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15377160

RESUMEN

Estrogens and their oxidative metabolites, the catechol estrogens, have been implicated in the development of breast cancer; yet, relatively little is known about estrogen metabolism in the breast. To determine how the parent hormone, 17 beta-estradiol (E(2)), is metabolized, we used recombinant, purified phase I enzymes, cytochrome P450 (CYP) 1A1 and 1B1, with the phase II enzymes catechol-O-methyltransferase (COMT) and glutathione S-transferase P1 (GSTP1), all of which are expressed in breast tissue. We employed both gas and liquid chromatography with mass spectrometry to measure E(2), the catechol estrogens 2-hydroxyestradiol (2-OHE(2)) and 4-hydroxyestradiol (4-OHE(2)), as well as methoxyestrogens and estrogen-GSH conjugates. The oxidation of E(2) to 2-OHE(2) and 4-OHE(2) was exclusively regulated by CYP1A1 and 1B1, regardless of the presence or concentration of COMT and GSTP1. COMT generated two products, 2-methoxyestradiol and 2-hydroxy-3-methoxyestradiol, from 2-OHE(2) but only one product, 4-methoxyestradiol, from 4-OHE(2). Similarly, GSTP1 yielded two conjugates, 2-OHE(2)-1-SG and 2-OHE(2)-4-SG, from the corresponding quinone 2-hydroxyestradiol-quinone and one conjugate, 4-OHE(2)-2-SG, from 4-hydroxyestradiol-quinone. Using the experimental data, we developed a multicompartment kinetic model for the oxidative metabolism of the parent hormone E(2), which revealed significant differences in rate constants for its C-2 and C-4 metabolites. The results demonstrated a tightly regulated interaction of phase I and phase II enzymes, in which the latter decreased the concentration of catechol estrogens and estrogen quinones, thereby reducing the potential of these oxidative estrogen metabolites to induce DNA damage.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Estradiol/análogos & derivados , Estradiol/metabolismo , Estrógenos de Catecol/metabolismo , Glándulas Mamarias Humanas/enzimología , Animales , Catecol O-Metiltransferasa/metabolismo , Citocromo P-450 CYP1B1 , Gutatión-S-Transferasa pi , Glutatión Transferasa/metabolismo , Humanos , Isoenzimas/metabolismo , Cinética , Glándulas Mamarias Animales/enzimología , Modelos Químicos , Modelos Moleculares , Oxidación-Reducción , Proteínas Recombinantes , Relación Estructura-Actividad
12.
Cancer Res ; 63(23): 8492-9, 2003 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-14679015

RESUMEN

The Phase I enzyme cytochrome p450 1B1 (CYP1B1) has been postulated to play a key role in estrogen-induced mammary carcinogenesis by catalyzing the oxidative metabolism of 17beta-estradiol (E(2)) to catechol estrogens (2-OHE(2) and 4-OHE(2)) and highly reactive estrogen quinones (E(2)-2,3-Q and E(2)-3,4-Q). The potential of the quinones to induce mutagenic DNA lesions is expected to be decreased by their conjugation with glutathione (GSH) either nonenzymatically or catalyzed by glutathione S-transferase P1 (GSTP1), a Phase II enzyme. Because the interaction of the Phase I and Phase II enzymes is not well defined in this setting, we prepared recombinant purified CYP1B1 and GSTP1 to examine their individual and combined roles in the oxidative pathway and used gas and liquid chromatography/mass spectrometry to measure the parent hormone E(2), the catechol estrogens, and the GSH conjugates. 2-OHE(2) and 4-OHE(2) did not form conjugates with GSH alone or in the presence of GSTP1. However, incubation of GSH and CYP1B1 with 2-OHE(2) resulted in nearly linear conjugation through C-4 and C-1 (i.e., 2-OHE(2)-4-SG and 2-OHE(2)-1-SG), whereas the reaction of 4-OHE(2) yielded only 4-OHE(2)-2-SG. When CYP1B1 and GSTP1 were added together, the rate of conjugation was accelerated with a hyperbolic pattern of product formation in the order 4-OHE(2)-2-SG > 2-OHE(2)-4-SG >> 2-OHE(2)-1-SG. Incubation of E(2) with CYP1B1 and GSTP1 resulted in the formation of 4-OHE(2), 2-OHE(2), 4-OHE(2)-2-SG, 2-OHE(2)-4-SG, and 2-OHE(2)-1-SG. The production of GSH-estrogen conjugates was dependent on the concentrations of E(2) and GSTP1 but overall yielded only one-tenth of the catechol estrogen production. The concentration gap between catechol estrogens and GSH-estrogen conjugates may result from nonenzymatic reaction of the labile quinones with other nucleophiles besides GSH or may reflect the lower efficiency of GSTP1 compared with CYP1B1. In summary, both reactions are coordinated qualitatively in terms of product formation and substrate utilization, but the quantitative gap would leave room for the accumulation of estrogen quinones and their potential for DNA damage as part of estrogen-induced mammary carcinogenesis.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Estradiol/metabolismo , Estrógenos de Catecol/metabolismo , Glutatión Transferasa/metabolismo , Isoenzimas/metabolismo , Glándulas Mamarias Humanas/enzimología , Citocromo P-450 CYP1B1 , Cromatografía de Gases y Espectrometría de Masas , Gutatión-S-Transferasa pi , Humanos , Glándulas Mamarias Humanas/metabolismo , Proteínas Recombinantes/metabolismo
13.
Cancer Res ; 63(12): 3127-32, 2003 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-12810639

RESUMEN

Cytochrome P450 1A1 (CYP1A1) and 1B1 (CYP1B1) catalyze the oxidative metabolism of 17 beta-estradiol (E2) to catechol estrogens (2-OHE2 and 4-OHE2) and estrogen quinones, which may lead to DNA damage. Catechol-O-methyltransferase catalyzes the methylation of catechol estrogens to methoxyestrogens (2-MeOE2, 2-OH-3-MeOE2, and 4-MeOE2), which simultaneously lowers the potential for DNA damage and increases the concentration of 2-MeOE2, an antiproliferative metabolite. In this study, we showed that CYP1A1 and CYP1B1 recognized as substrates both the parent hormone E2 and the methoxyestrogens. Using purified recombinant enzymes, we demonstrated that CYP1A1 and CYP1B1 O-demethylated the methoxyestrogens to catechol estrogens according to Michaelis-Menten kinetics. Both CYP1A1 and CYP1B1 demethylated 2-MeOE2 and 2-OH-3-MeOE2 to 2-OHE2, whereas CYP1B1 additionally demethylated 4-MeOE2 to 4-OHE2. Because the P450-mediated oxidation of E2 and the O-demethylation of methoxyestrogens both yielded identical catechol estrogens as products, we used deuterated E2 (E2-d4), unlabeled methoxyestrogens, and gas chromatography/mass spectrometry to examine both reactions simultaneously. Kinetic analysis revealed that methoxyestrogens acted as noncompetitive inhibitors of E2 oxidation with K(i) ranging from 27 to 153 micro M. For both enzymes, the order of inhibition by methoxyestrogens was 2-OH-3-MeOE2 > or = 2-MeOE2 > 4-MeOE2. Thus, methoxyestrogens exert feedback inhibition on CYP1A1- and CYP1B1-mediated oxidative estrogen metabolism, thereby reducing the potential for estrogen-induced DNA damage.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Citocromo P-450 CYP1A1/antagonistas & inhibidores , Estradiol/análogos & derivados , Estradiol/metabolismo , Estradiol/farmacología , 2-Metoxiestradiol , Hidrocarburo de Aril Hidroxilasas/genética , Hidrocarburo de Aril Hidroxilasas/metabolismo , Catecol O-Metiltransferasa/metabolismo , Ensayos Clínicos como Asunto , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1 , Daño del ADN , Deuterio/metabolismo , Estradiol/biosíntesis , Retroalimentación Fisiológica , Cromatografía de Gases y Espectrometría de Masas , Humanos , Cinética , Metilación , Oxidación-Reducción , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...