Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(6): 4893, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28117464

RESUMEN

Correction for 'New particle formation and growth from methanesulfonic acid, trimethylamine and water' by Haihan Chen et al., Phys. Chem. Chem. Phys., 2015, 17, 13699-13709.

2.
Proc Natl Acad Sci U S A ; 112(44): 13514-9, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483454

RESUMEN

Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.


Asunto(s)
Contaminantes Atmosféricos/química , Material Particulado/química , Dióxido de Azufre/química , Azufre/química , Seguimiento de Parámetros Ecológicos/métodos , Seguimiento de Parámetros Ecológicos/tendencias , Monitoreo del Ambiente/métodos , Predicción , Combustibles Fósiles , Humanos , Mesilatos/química , Modelos Teóricos , Oxidación-Reducción , Tamaño de la Partícula , Ácidos Sulfúricos/química
3.
Phys Chem Chem Phys ; 17(20): 13699-709, 2015 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-25942743

RESUMEN

New particle formation from gas-to-particle conversion represents a dominant source of atmospheric particles and affects radiative forcing, climate and human health. The species involved in new particle formation and the underlying mechanisms remain uncertain. Although sulfuric acid is commonly recognized as driving new particle formation, increasing evidence suggests the involvement of other species. Here we study particle formation and growth from methanesulfonic acid, trimethylamine and water at reaction times from 2.3 to 32 s where particles are 2-10 nm in diameter using a newly designed and tested flow system. The flow system has multiple inlets to facilitate changing the mixing sequence of gaseous precursors. The relative humidity and precursor concentrations, as well as the mixing sequence, are varied to explore their effects on particle formation and growth in order to provide insight into the important mechanistic steps. We show that water is involved in the formation of initial clusters, greatly enhancing their formation as well as growth into detectable size ranges. A kinetics box model is developed that quantitatively reproduces the experimental data under various conditions. Although the proposed scheme is not definitive, it suggests that incorporating such mechanisms into atmospheric models may be feasible in the near future.

4.
Environ Sci Technol ; 48(1): 323-30, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24304088

RESUMEN

Organosulfur compounds generated from a variety of biological as well as anthropogenic sources are oxidized in air to form sulfuric acid and methanesulfonic acid (MSA). Both of these acids formed initially in the gas phase react with ammonia and amines in air to form and grow new particles, which is important for visibility, human health and climate. A competing sink is deposition on surfaces in the boundary layer. However, relatively little is known about reactions after they deposit on surfaces. We report here diffuse reflectance infrared Fourier transform spectrometry (DRIFTS) studies of the reaction of MSA with trimethylamine (TMA) on a silicon powder at atmospheric pressure in synthetic air and at room temperature, either in the absence or in the presence of water vapor. In both cases, DRIFTS spectra of the product surface species are essentially the same as the transmission spectrum obtained for trimethylaminium methanesulfonate, indicating the formation of the salt on the surface with a lower limit to the reaction probability of γ > 10(-6). To the best of our knowledge, this is the first infrared study to demonstrate this chemistry from the heterogeneous reaction of MSA with an amine on a surface. This heterogeneous chemistry appears to be sufficiently fast that it could impact measurements of gas-phase amines through reactions with surface-adsorbed acids on sampling lines and inlets. It could also represent an additional sink for amines in the boundary layer, especially at night when the gas-phase reactions of amines with OH radical and ozone are minimized.


Asunto(s)
Mesilatos/química , Metilaminas/química , Silicio/química , Adsorción , Presión Atmosférica , Polvos , Espectroscopía Infrarroja por Transformada de Fourier , Propiedades de Superficie
5.
Proc Natl Acad Sci U S A ; 109(46): 18719-24, 2012 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-23090988

RESUMEN

Airborne particles affect human health and significantly influence visibility and climate. A major fraction of these particles result from the reactions of gaseous precursors to generate low-volatility products such as sulfuric acid and high-molecular weight organics that nucleate to form new particles. Ammonia and, more recently, amines, both of which are ubiquitous in the environment, have also been recognized as important contributors. However, accurately predicting new particle formation in both laboratory systems and in air has been problematic. During the oxidation of organosulfur compounds, gas-phase methanesulfonic acid is formed simultaneously with sulfuric acid, and both are found in particles in coastal regions as well as inland. We show here that: (i) Amines form particles on reaction with methanesulfonic acid, (ii) water vapor is required, and (iii) particle formation can be quantitatively reproduced by a semiempirical kinetics model supported by insights from quantum chemical calculations of likely intermediate clusters. Such an approach may be more broadly applicable in models of outdoor, indoor, and industrial settings where particles are formed, and where accurate modeling is essential for predicting their impact on health, visibility, and climate.


Asunto(s)
Amoníaco/química , Modelos Químicos , Material Particulado/química , Ácidos Sulfínicos/química , Agua/química , Humanos , Oxidación-Reducción
6.
Environ Sci Technol ; 45(7): 2755-60, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21405079

RESUMEN

Anthropogenic sources release into the troposphere a wide range of volatile organic compounds (VOCs) including aromatic hydrocarbons, whose major sources are believed to be combustion and the evaporation of fossil fuels. An important question is whether there are other sources of aromatics in air. We report here the formation of p-cymene [1-methyl-4-(1-methylethyl) benzene, C6H4(CH3)(C3H7)] from the oxidation of α-pinene by OH, O3, and NO3 at 1 atm in air and 298 K at low (<5%) and high (70%) relative humidities (RH). Loss of α-pinene and the generation of p-cymene were measured using GC-MS. The fractional yields of p-cymene relative to the loss of α-pinene, Δ [p-cymeme]/Δ [α-pinene], were measured to range from (1.6±0.2)×10(-5) for the O3 reaction to (3.0±0.3)×10(-4) for the NO3 reaction in the absence of added water vapor. The yields for the OH and O3 reactions increased by a factor of 4-8 at 70% RH (uncertainties are ±2s). The highest yields at 70% RH for the OH and O3 reactions, ∼15 times higher than for dry conditions, were observed if the walls of the Teflon reaction chamber had been previously exposed to H2SO4 formed from the OH oxidation of SO2. Possible mechanisms of the conversion of α-pinene to p-cymene and the potential importance in the atmosphere are discussed.


Asunto(s)
Contaminantes Atmosféricos/síntesis química , Radical Hidroxilo/química , Monoterpenos/química , Monoterpenos/síntesis química , Óxidos de Nitrógeno/química , Ozono/química , Contaminantes Atmosféricos/análisis , Atmósfera/química , Monoterpenos Bicíclicos , Cimenos , Monoterpenos/análisis , Oxidantes/química , Compuestos Orgánicos Volátiles/síntesis química , Compuestos Orgánicos Volátiles/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...