Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ann Biomed Eng ; 52(5): 1393-1402, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38446329

RESUMEN

Osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage. However, factors that cause graft subsidence are not well understood. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint, suitable for an investigation of parameters affecting graft stability. Cadaveric femurs were used to experimentally calibrate the bone properties and graft-bone frictional forces for use in corresponding image-based FE models, generated from µCT scan data. Effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using further in vitro tests. Here, six defects were created in the femoral condyles, which were subsequently treated with osteochondral autografts or metal pins. Matching image-based FE models were created, and the contact patches were compared. The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC = 0.87). The tibiofemoral joint experiment provided a range of cases that were accurately described in the resultant pressure maps and were well represented in the FE models. Cartilage defects and repair quality were experimentally measurable with good agreement in the FE model pressure maps. Model confidence was built through extensive validation and sensitivity testing. It was found that specimen-specific properties were required to accurately represent graft behaviour. The final models produced are suitable for a range of parametric testing to investigate immediate graft stability.


Asunto(s)
Cartílago Articular , Articulación Tibiofemoral , Humanos , Análisis de Elementos Finitos , Cartílago Articular/diagnóstico por imagen , Cartílago Articular/cirugía , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Huesos
2.
J Mech Behav Biomed Mater ; 134: 105411, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36037705

RESUMEN

Osteoarthritis (OA) is the most prevalent chronic rheumatic disease worldwide with knee OA having an estimated lifetime risk of approximately 14%. Autologous osteochondral grafting has demonstrated positive outcomes in some patients, however, understanding of the biomechanical function and how treatments can be optimised remains limited. Increased short-term stability of the grafts allows cartilage surfaces to remain congruent prior to graft integration. In this study methods for generating specimen specific finite element (FE) models of osteochondral grafts were developed, using parallel experimental data for calibration and validation. Experimental testing of the force required to displace osteochondral grafts by 2 mm was conducted on three porcine knees, each with four grafts. Specimen specific FE models of the hosts and grafts were created from registered µCT scans captured from each knee (pre- and post-test). Material properties were based on the µCT background with a conversion between µCT voxel brightness and Young's modulus. This conversion was based on the results of the separate testing of eight porcine condyles and optimization of specimen specific FE models. The comparison between the experimental and computational push-in forces gave a strong agreement with a concordance correlation coefficient (CCC) = 0.75, validating the modelling approach. The modelling process showed that homogenous material properties based on whole bone BV/TV calculations are insufficient for accurate modelling and that an intricate description of the density distribution is required. The robust methodology can provide a method of testing different treatment options and can be used to investigate graft stability in full tibiofemoral joints.


Asunto(s)
Cartílago Articular , Osteoartritis , Animales , Cartílago/trasplante , Cartílago Articular/diagnóstico por imagen , Fémur/diagnóstico por imagen , Análisis de Elementos Finitos , Articulación de la Rodilla , Porcinos
3.
J Mech Behav Biomed Mater ; 109: 103797, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32347215

RESUMEN

The successful development of cartilage repair treatments for the knee requires understanding of the biomechanical environment within the joint. Computational finite element models play an important role in non-invasively understanding knee mechanics, but it is important to compare model findings to experimental data. The purpose of this study was to develop a methodology for generating subject-specific finite element models of porcine tibiofemoral joints that was robust and valid over multiple different constraint scenarios. Computational model predictions of two knees were compared to experimental studies on corresponding specimens loaded under several different constraint scenarios using a custom designed experimental rig, with variations made to the femoral flexion angle and level of tibial freedom. For both in vitro specimens, changing the femoral flexion angle had a marked effect on the contact distribution observed experimentally. With the tibia fixed, the majority of the contact region shifted to the medial plateau as flexion was increased. This did not occur when the tibia was free to displace and rotate in response to applied load. These trends in contact distribution across the medial and lateral plateaus were replicated in the computational models. In an additional model with the meniscus removed, contact pressures were elevated by a similar magnitude to the increase seen when the meniscus was removed experimentally. Overall, the models were able to capture specimen-specific trends in contact distribution under a variety of different loads, providing the potential to investigate subject-specific outcomes for knee interventions.


Asunto(s)
Articulación de la Rodilla , Tibia , Animales , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Libertad , Humanos , Porcinos
4.
JOR Spine ; 3(1): e1077, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32211589

RESUMEN

Vertebroplasty has been widely used for the treatment of osteoporotic compression fractures but the efficacy of the technique has been questioned by the outcomes of randomized clinical trials. Finite-element (FE) models allow an investigation into the structural and geometric variation that affect the response to augmentation. However, current specimen-specific FE models are limited due to their poor reproduction of cement augmentation behavior. The aims of this study were to develop new methods of modeling the vertebral body in both a nonaugmented and augmented state. Experimental tests were conducted using human lumbar spine vertebral specimens. These tests included micro-computed tomography imaging, mechanical testing, augmentation with cement, reimaging, and retesting. Specimen-specific FE models of the vertebrae were made comparing different approaches to capturing the bone material properties and to modeling the cement augmentation region. These methods significantly improved the modeling accuracy of nonaugmented vertebrae. Methods that used the registration of multiple images (pre- and post-augmentation) of a vertebra achieved good agreement between augmented models and their experimental counterparts in terms of predictions of stiffness. Such models allow for further investigation into how vertebral variation influences the mechanical outcomes of vertebroplasty.

5.
Ann Biomed Eng ; 45(10): 2451-2460, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28744839

RESUMEN

Image-based continuum-level finite element models have been used for bones to evaluate fracture risk and the biomechanical effects of diseases and therapies, capturing both the geometry and tissue mechanical properties. Although models of vertebrae of various species have been developed, an inter-species comparison has not yet been investigated. The purpose of this study was to derive species-specific modelling methods and compare the accuracy of image-based finite element models of vertebrae across species. Vertebral specimens were harvested from porcine (N = 12), ovine (N = 13) and bovine (N = 14) spines. The specimens were experimentally loaded to failure and apparent stiffness values were derived. Image-based finite element models were generated reproducing the experimental protocol. A linear relationship between the element grayscale and elastic modulus was calibrated for each species matching in vitro and in silico stiffness values, and validated on independent sets of models. The accuracy of these relationships were compared across species. Experimental stiffness values were significantly different across species and specimen-specific models required species-specific linear relationship between image grayscale and elastic modulus. A good agreement between in vitro and in silico values was achieved for all species, reinforcing the generality of the developed methodology.


Asunto(s)
Módulo de Elasticidad , Análisis de Elementos Finitos , Modelos Biológicos , Fracturas de la Columna Vertebral , Columna Vertebral , Animales , Bovinos , Ovinos , Especificidad de la Especie , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/patología , Fracturas de la Columna Vertebral/fisiopatología , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/patología , Columna Vertebral/fisiopatología , Porcinos , Soporte de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...