Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(12): e0261660, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34941939

RESUMEN

Earlier, we proposed the "mechanosome" concept as a testable model for understanding how mechanical stimuli detected by cell surface adhesion molecules are transmitted to modulate gene expression inside cells. Here, for the first time we document a putative mechanosome involving Src, Pyk2 and MBD2 in MLO-Y4 osteocytes with high spatial resolution using FRET-FLIM. Src-Pyk2 complexes were concentrated at the periphery of focal adhesions and the peri-nuclear region. Pyk2-MBD2 complexes were located primarily in the nucleus and peri-nuclear region. Lifetime measurements indicated that Src and MBD2 did not interact directly. Finally, mechanical stimulation by fluid flow induced apparent accumulation of Src-Pyk2 protein complexes in the peri-nuclear/nuclear region, consistent with the proposed behavior of a mechanosome in response to a mechanical stimulus.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Osteocitos/metabolismo , Familia-src Quinasas/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/análisis , Transferencia Resonante de Energía de Fluorescencia , Quinasa 2 de Adhesión Focal/análisis , Adhesiones Focales/metabolismo , Mecanotransducción Celular , Ratones , Osteocitos/citología , Familia-src Quinasas/análisis
2.
Biophys J ; 118(8): 1820-1829, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32191861

RESUMEN

We report the use of pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) to measure the activities of two different biosensor probes simultaneously in single living cells. Many genetically encoded biosensors rely on the measurement of Förster resonance energy transfer (FRET) to detect changes in biosensor conformation that accompany the targeted cell signaling event. One of the most robust ways of quantifying FRET is to measure changes in the fluorescence lifetime of the donor fluorophore using FLIM. The study of complex signaling networks in living cells demands the ability to track more than one of these cellular events at the same time. Here, we demonstrate how PIE-FLIM can separate and quantify the signals from different FRET-based biosensors to simultaneously measure changes in the activity of two cell signaling pathways in the same living cells in tissues. The imaging system described here uses selectable laser wavelengths and synchronized detection gating that can be tailored and optimized for each FRET pair. Proof-of-principle studies showing simultaneous measurement of cytosolic calcium and protein kinase A activity are shown, but the PIE-FLIM approach is broadly applicable to other signaling pathways.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Luz , Microscopía Fluorescente
3.
Sci Rep ; 9(1): 8449, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31186447

RESUMEN

The pancreatic islet is a complex micro-organ containing numerous cell types, including endocrine, immune, and endothelial cells. The communication of these systems is lost upon isolation of the islets, and therefore the pathogenesis of diabetes can only be fully understood by studying this organized, multicellular environment in vivo. We have developed several adaptable tools to create a versatile platform to interrogate ß-cell function in vivo. Specifically, we developed ß-cell-selective virally-encoded fluorescent protein biosensors that can be rapidly and easily introduced into any mouse. We then coupled the use of these biosensors with intravital microscopy, a powerful tool that can be used to collect cellular and subcellular data from living tissues. Together, these approaches allowed the observation of in vivo ß-cell-specific ROS dynamics using the Grx1-roGFP2 biosensor and calcium signaling using the GcAMP6s biosensor. Next, we utilized abdominal imaging windows (AIW) to extend our in vivo observations beyond single-point terminal measurements to collect longitudinal physiological and biosensor data through repeated imaging of the same mice over time. This platform represents a significant advancement in our ability to study ß-cell structure and signaling in vivo, and its portability for use in virtually any mouse model will enable meaningful studies of ß-cell physiology in the endogenous islet niche.


Asunto(s)
Células Endoteliales/ultraestructura , Células Secretoras de Insulina/ultraestructura , Microscopía Intravital/métodos , Islotes Pancreáticos/ultraestructura , Animales , Técnicas Biosensibles , Señalización del Calcio/genética , Señalización del Calcio/inmunología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Islotes Pancreáticos/metabolismo , Islotes Pancreáticos/patología , Trasplante de Islotes Pancreáticos , Ratones
5.
Methods ; 128: 95-104, 2017 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28434902

RESUMEN

Intravital microscopy (IVM) is an imaging tool that is capable of detecting subcellular signaling or metabolic events as they occur in tissues in the living animal. Imaging in highly scattering biological tissues, however, is challenging because of the attenuation of signal in images acquired at increasing depths. Depth-dependent signal attenuation is the major impediment to IVM, limiting the depth from which significant data can be obtained. Therefore, making quantitative measurements by IVM requires methods that use internal calibration, or alternatively, a completely different way of evaluating the signals. Here, we describe how ratiometric imaging of genetically encoded biosensor probes can be used to make quantitative measurements of changes in the activity of cell signaling pathways. Then, we describe how fluorescence lifetime imaging can be used for label-free measurements of the metabolic states of cells within the living animal.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Microscopía Intravital/métodos , Riñón/diagnóstico por imagen , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Células HEK293 , Humanos , Riñón/fisiología , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/fisiología
6.
Nat Protoc ; 11(11): 2066-80, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27685098

RESUMEN

Genetically encoded fluorescent protein (FP)-based biosensor probes are useful tools for monitoring cellular events in living cells and tissues. Because these probes were developed for one-photon excitation approaches, their broad two-photon excitation (2PE) and poorly understood photobleaching characteristics have made their implementation in studies using two-photon laser-scanning microscopy (TPLSM) challenging. Here we describe a protocol that simplifies the use of Förster resonance energy transfer (FRET)-based biosensors in TPLSM. First, the TPLSM system is evaluated and optimized using FRET standards expressed in living cells, which enables the determination of spectral bleed-through (SBT) and the confirmation of FRET measurements from the known standards. Next, we describe how to apply the approach experimentally using a modified version of the A kinase activity reporter (AKAR) protein kinase A (PKA) biosensor as an example-first in cells in culture and then in hepatocytes in the liver of living mice. The microscopic imaging can be accomplished in a day in laboratories that routinely use TPLSM.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Supervivencia Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HEK293 , Humanos , Ratones
7.
Diabetes ; 65(10): 3039-52, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27489309

RESUMEN

The sarcoendoplasmic reticulum (ER) Ca(2+) ATPase 2 (SERCA2) pump is a P-type ATPase tasked with the maintenance of ER Ca(2+) stores. Whereas ß-cell SERCA2 expression is reduced in diabetes, the role of SERCA2 in the regulation of whole-body glucose homeostasis has remained uncharacterized. To this end, SERCA2 heterozygous mice (S2HET) were challenged with a high-fat diet (HFD) containing 45% of kilocalories from fat. After 16 weeks of the HFD, S2HET mice were hyperglycemic and glucose intolerant, but adiposity and insulin sensitivity were not different between HFD-fed S2HET mice and HFD-fed wild-type controls. Consistent with a defect in ß-cell function, insulin secretion, glucose-induced cytosolic Ca(2+) mobilization, and the onset of steady-state glucose-induced Ca(2+) oscillations were impaired in HFD-fed S2HET islets. Moreover, HFD-fed S2HET mice exhibited reduced ß-cell mass and proliferation, altered insulin production and proinsulin processing, and increased islet ER stress and death. In contrast, SERCA2 activation with a small molecule allosteric activator increased ER Ca(2+) storage and rescued tunicamycin-induced ß-cell death. In aggregate, these data suggest a critical role for SERCA2 and the regulation of ER Ca(2+) homeostasis in the ß-cell compensatory response to diet-induced obesity.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Obesidad/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Glucemia/metabolismo , Calcio/metabolismo , Proliferación Celular/fisiología , Citosol/metabolismo , Dieta Alta en Grasa/efectos adversos , Retículo Endoplásmico/metabolismo , Homeostasis , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Células Secretoras de Insulina/fisiología , Islotes Pancreáticos/metabolismo , Masculino , Ratones , Obesidad/etiología , Obesidad/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/deficiencia , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
8.
Am J Physiol Cell Physiol ; 309(11): C724-35, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26333599

RESUMEN

The commercial availability of multiphoton microscope systems has nurtured the growth of intravital microscopy as a powerful technique for evaluating cell biology in the relevant context of living animals. In parallel, new fluorescent protein (FP) biosensors have become available that enable studies of the function of a wide range of proteins in living cells. Biosensor probes that exploit Förster resonance energy transfer (FRET) are among the most sensitive indicators of an array of cellular processes. However, differences between one-photon and two-photon excitation (2PE) microscopy are such that measuring FRET by 2PE in the intravital setting remains challenging. Here, we describe an approach that simplifies the use of FRET-based biosensors in intravital 2PE microscopy. Based on a systematic comparison of many different FPs, we identified the monomeric (m) FPs mTurquoise and mVenus as particularly well suited for intravital 2PE FRET studies, enabling the ratiometric measurements from linked FRET probes using a pair of experimental images collected simultaneously. The behavior of the FPs is validated by fluorescence lifetime and sensitized emission measurements of a set of FRET standards. The approach is demonstrated using a modified version of the AKAR protein kinase A biosensor, first in cells in culture, and then in hepatocytes in the liver of living mice. The approach is compatible with the most common 2PE microscope configurations and should be applicable to a variety of different FRET probes.


Asunto(s)
Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Miocitos Cardíacos/química , Animales , Células Cultivadas , Colorantes Fluorescentes/análisis , Células HEK293 , Humanos , Proteínas Luminiscentes/análisis , Ratones , Microscopía Confocal/métodos
9.
Biophys J ; 109(1): 7-17, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26153697

RESUMEN

Fluorescence correlation spectroscopy (FCS) is a noninvasive technique that probes the diffusion dynamics of proteins down to single-molecule sensitivity in living cells. Critical mechanistic insight is often drawn from FCS experiments by fitting the resulting time-intensity correlation function, G(t), to known diffusion models. When simple models fail, the complex diffusion dynamics of proteins within heterogeneous cellular environments can be fit to anomalous diffusion models with adjustable anomalous exponents. Here, we take a different approach. We use the maximum entropy method to show-first using synthetic data-that a model for proteins diffusing while stochastically binding/unbinding to various affinity sites in living cells gives rise to a G(t) that could otherwise be equally well fit using anomalous diffusion models. We explain the mechanistic insight derived from our method. In particular, using real FCS data, we describe how the effects of cell crowding and binding to affinity sites manifest themselves in the behavior of G(t). Our focus is on the diffusive behavior of an engineered protein in 1) the heterochromatin region of the cell's nucleus as well as 2) in the cell's cytoplasm and 3) in solution. The protein consists of the basic region-leucine zipper (BZip) domain of the CCAAT/enhancer-binding protein (C/EBP) fused to fluorescent proteins.


Asunto(s)
Microscopía Fluorescente/métodos , Animales , Proteína alfa Potenciadora de Unión a CCAAT/química , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Difusión , Entropía , Heterocromatina/metabolismo , Ratones , Modelos Biológicos , Modelos Moleculares , Procesos Estocásticos
10.
PLoS One ; 9(5): e97942, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24841674

RESUMEN

Mechanical stimulation of the skeleton promotes bone gain and suppresses bone loss, ultimately resulting in improved bone strength and fracture resistance. The molecular mechanisms directing anabolic and/or anti-catabolic actions on the skeleton during loading are not fully understood. Identifying molecular mechanisms of mechanotransduction (MTD) signaling cascades could identify new therapeutic targets. Most research into MTD mechanisms is typically focused on understanding the signaling pathways that stimulate new bone formation in response to load. However, we investigated the structural, signaling and transcriptional molecules that suppress the stimulatory effects of loading. The high bone mass phenotype of mice with global deletion of either Pyk2 or Src suggests a role for these tyrosine kinases in repression of bone formation. We used fluid shear stress as a MTD stimulus to identify a novel Pyk2/Src-mediated MTD pathway that represses mechanically-induced bone formation. Our results suggest Pyk2 and Src function as molecular switches that inhibit MTD in our mechanically stimulated osteocyte culture experiments. Once activated by oscillatory fluid shear stress (OFSS), Pyk2 and Src translocate to and accumulate in the nucleus, where they associate with a protein involved in DNA methylation and the interpretation of DNA methylation patterns -methyl-CpG-binding domain protein 2 (MBD2). OFSS-induced Cox-2 and osteopontin expression was enhanced in Pyk2 KO osteoblasts, while inhibition of Src enhanced osteocalcin expression in response to OFSS. We found that Src kinase activity increased in the nucleus of osteocytes in response to OFSS and an interaction activated between Src (Y418) and Pyk2 (Y402) increased in response to OFSS. Thus, as a mechanism to prevent an over-reaction to physical stimulation, mechanical loading may induce the formation of a Src/Pyk2/MBD2 complex in the nucleus that functions to suppress anabolic gene expression.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Mecanotransducción Celular/fisiología , Complejos Multiproteicos/metabolismo , Osteocitos/fisiología , Estrés Mecánico , Animales , Antracenos , Western Blotting , Metilación de ADN/genética , Cartilla de ADN/genética , Proteínas de Unión al ADN/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Quinasa 2 de Adhesión Focal/metabolismo , Ratones , Complejos Multiproteicos/biosíntesis , Osteocitos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Resistencia al Corte , Familia-src Quinasas/metabolismo
11.
J Biol Chem ; 289(6): 3677-88, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24338477

RESUMEN

Vinculin localizes to membrane adhesion junctions in smooth muscle tissues, where its head domain binds to talin and its tail domain binds to filamentous actin, thus linking actin filaments to the extracellular matrix. Vinculin can assume a closed conformation, in which the head and tail domains bind to each other and mask the binding sites for actin and talin, and an open activated conformation that exposes the binding sites for talin and actin. Acetylcholine stimulation of tracheal smooth muscle tissues induces the recruitment of vinculin to the cell membrane and its interaction with talin and actin, which is required for active tension development. Vinculin phosphorylation at Tyr(1065) on its C terminus increases concurrently with tension development in tracheal smooth muscle tissues. In the present study, the role of vinculin phosphorylation at Tyr(1065) in regulating the conformation and function of vinculin during airway smooth muscle contraction was evaluated. Vinculin constructs with point mutations at Tyr(1065) (vinculin Y1065F and vinculin Y1065E) and vinculin conformation-sensitive FRET probes were expressed in smooth muscle tissues to determine how Tyr(1065) phosphorylation affects smooth muscle contraction and the conformation and cellular functions of vinculin. The results show that vinculin phosphorylation at tyrosine 1065 is required for normal tension generation in airway smooth muscle during contractile stimulation and that Tyr(1065) phosphorylation regulates the conformation and scaffolding activity of the vinculin molecule. We conclude that the phosphorylation of vinculin at tyrosine 1065 provides a mechanism for regulating the function of vinculin in airway smooth muscle in response to contractile stimulation.


Asunto(s)
Membrana Celular/metabolismo , Contracción Muscular/fisiología , Músculo Liso/metabolismo , Tráquea/metabolismo , Vinculina/metabolismo , Acetilcolina/farmacología , Actinas/genética , Actinas/metabolismo , Animales , Membrana Celular/genética , Agonistas Colinérgicos/farmacología , Perros , Contracción Muscular/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Estructura Terciaria de Proteína , Talina/genética , Talina/metabolismo , Vinculina/genética
12.
Methods ; 66(2): 200-7, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23806643

RESUMEN

The method of fluorescence lifetime imaging microscopy (FLIM) is a quantitative approach that can be used to detect Förster resonance energy transfer (FRET). The use of FLIM to measure the FRET that results from the interactions between proteins labeled with fluorescent proteins (FPs) inside living cells provides a non-invasive method for mapping interactomes. Here, the use of the phasor plot method to analyze frequency domain (FD) FLIM measurements is described, and measurements obtained from cells producing the 'FRET standard' fusion proteins are used to validate the FLIM system for FRET measurements. The FLIM FRET approach is then used to measure both homologous and heterologous protein-protein interactions (PPI) involving the CCAAT/enhancer-binding protein alpha (C/EBPα). C/EBPα is a transcription factor that controls cell differentiation, and localizes to heterochromatin where it interacts with the heterochromatin protein 1 alpha (HP1α). The FLIM-FRET method is used to quantify the homologous interactions between the FP-labeled basic leucine zipper (BZip) domain of C/EBPα. Then the heterologous interactions between the C/EBPa BZip domain and HP1a are quantified using the FRET-FLIM method. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Animales , Anodoncia , Proteínas Potenciadoras de Unión a CCAAT/química , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Línea Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Transferencia de Energía , Transferencia Resonante de Energía de Fluorescencia/normas , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/química , Humanos , Incisivo/anomalías , Ratones , Microscopía Fluorescente/normas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas/normas , Estándares de Referencia , Soluciones
13.
Int J Mol Sci ; 14(10): 20340-58, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-24129172

RESUMEN

The scientific community is still looking for a bright, stable red fluorescent protein (FP) as functional as the current best derivatives of green fluorescent protein (GFP). The red FPs exploit the reduced background of cells imaged in the red region of the visible spectrum, but photophysical short comings have limited their use for some spectroscopic approaches. Introduced nearly a decade ago, mCherry remains the most often used red FP for fluorescence correlation spectroscopy (FCS) and other single molecule techniques, despite the advent of many newer red FPs. All red FPs suffer from complex photophysics involving reversible conversions to a dark state (flickering), a property that results in fairly low red FP quantum yields and potential interference with spectroscopic analyses including FCS. The current report describes assays developed to determine the best working conditions for, and to uncover the shortcoming of, four recently engineered red FPs for use in FCS and other diffusion and spectroscopic studies. All five red FPs assayed had potential shortcomings leading to the conclusion that the current best red FP for FCS is still mCherry. The assays developed here aim to enable the rapid evaluation of new red FPs and their smooth adaptation to live cell spectroscopic microscopy and nanoscopy.


Asunto(s)
Proteínas Luminiscentes/metabolismo , Animales , Línea Celular , Fluorescencia , Ratones , Espectrometría de Fluorescencia/métodos , Proteína Fluorescente Roja
14.
Nat Methods ; 10(5): 407-9, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23524392

RESUMEN

We report a monomeric yellow-green fluorescent protein, mNeonGreen, derived from a tetrameric fluorescent protein from the cephalochordate Branchiostoma lanceolatum. mNeonGreen is the brightest monomeric green or yellow fluorescent protein yet described to our knowledge, performs exceptionally well as a fusion tag for traditional imaging as well as stochastic single-molecule superresolution imaging and is an excellent fluorescence resonance energy transfer (FRET) acceptor for the newest cyan fluorescent proteins.


Asunto(s)
Cordados/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Animales , Datos de Secuencia Molecular , Procesos Estocásticos
15.
J Biomed Opt ; 18(2): 25002, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23392382

RESUMEN

The epigenetic control of heterochromatin deposition is achieved through a network of protein interactions mediated by the heterochromatin protein 1 (HP1). In earlier studies, we showed that the CCAAT/enhancer-binding protein alpha (C/EBPα), a transcription factor that controls cell differentiation, localizes to heterochromatin, and interacts with HP1α. Here, deletion and mutagenesis are combined with live-cell imaging approaches to characterize these protein interactions. The results demonstrate that the basic region and leucine zipper (BZip) domain of C/EBPα is sufficient for the interaction with HP1α in regions of heterochromatin. Fluorescence correlation spectroscopy and cross-correlation (FCS and FCCS) revealed very different diffusion profiles for HP1α and the BZip protein, and co-expression studies indicated that the mobile fractions of these nuclear proteins diffuse independently of one another. The steady-state interactions of these proteins in regions of heterochromatin were monitored using Förster resonance energy transfer (FRET). A point mutation in HP1α, W174A, which disrupts the interactions with proteins containing the common PxVxL motif did not affect the interaction with the BZip protein. In contrast, the HP1α W41A mutation, which prevents binding to methylated histones, exhibited greatly reduced FRET efficiency when compared to the wild type HP1α or HP1αW174A. The functional significance of these interactions is discussed.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/química , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Microscopía Fluorescente/métodos , Espectrometría de Fluorescencia/métodos , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/química , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Línea Celular , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Mutagénesis Sitio-Dirigida , Fenómenos Ópticos , Mutación Puntual , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
16.
Int J Mol Sci ; 13(11): 14385-400, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23203070

RESUMEN

Live-cell microscopy is now routinely used to monitor the activities of the genetically encoded biosensor proteins that are designed to directly measure specific cell signaling events inside cells, tissues, or organisms. Most fluorescent biosensor proteins rely on Förster resonance energy transfer (FRET) to report conformational changes in the protein that occur in response to signaling events, and this is commonly measured with intensity-based ratiometric imaging methods. An alternative method for monitoring the activities of the FRET-based biosensor proteins is fluorescence lifetime imaging microscopy (FLIM). FLIM measurements are made in the time domain, and are not affected by factors that commonly limit intensity measurements. In this review, we describe the use of the digital frequency domain (FD) FLIM method for the analysis of FRET signals. We illustrate the methods necessary for the calibration of the FD FLIM system, and demonstrate the analysis of data obtained from cells expressing "FRET standard" fusion proteins. We then use the FLIM-FRET approach to monitor the changes in activities of two different biosensor proteins in specific regions of single living cells. Importantly, the factors required for the accurate determination and reproducibility of lifetime measurements are described in detail.


Asunto(s)
Técnicas Biosensibles , Rastreo Celular/métodos , Microscopía Fluorescente/métodos , Animales , Humanos
17.
Bioessays ; 34(5): 341-50, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22396229

RESUMEN

The discovery and engineering of novel fluorescent proteins (FPs) from diverse organisms is yielding fluorophores with exceptional characteristics for live-cell imaging. In particular, the development of FPs for fluorescence (or Förster) resonance energy transfer (FRET) microscopy is providing important tools for monitoring dynamic protein interactions inside living cells. The increased interest in FRET microscopy has driven the development of many different methods to measure FRET. However, the interpretation of FRET measurements is complicated by several factors including the high fluorescence background, the potential for photoconversion artifacts and the relatively low dynamic range afforded by this technique. Here, we describe the advantages and disadvantages of four methods commonly used in FRET microscopy. We then discuss the selection of FPs for the different FRET methods, identifying the most useful FP candidates for FRET microscopy. The recent success in expanding the FP color palette offers the opportunity to explore new FRET pairs.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes , Proteínas Fluorescentes Verdes , Microscopía Fluorescente/métodos , Imagen Molecular/métodos , Técnicas Biosensibles/métodos , Fotoblanqueo
18.
Methods Enzymol ; 504: 371-91, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22264545

RESUMEN

Fluorescence lifetime imaging microscopy (FLIM) is now routinely used for dynamic measurements of signaling events inside single living cells, such as monitoring changes in intracellular ions and detecting protein-protein interactions. Here, we describe the digital frequency domain FLIM data acquisition and analysis. We describe the methods necessary to calibrate the FLIM system and demonstrate how they are used to measure the quenched donor fluorescence lifetime that results from Förster Resonance Energy Transfer (FRET). We show how the "FRET-standard" fusion proteins are used to validate the FLIM system for FRET measurements. We then show how FLIM-FRET can be used to detect the dimerization of the basic leucine zipper (B Zip) domain of the transcription factor CCAAT/enhancer binding protein α in the nuclei of living mouse pituitary cells. Importantly, the factors required for the accurate determination and reproducibility of lifetime measurements are described in detail.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/análisis , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Mapeo de Interacción de Proteínas , Animales , Calibración , Proteínas Luminiscentes/análisis , Ratones , Unión Proteica , Transducción de Señal
19.
Nat Protoc ; 6(9): 1324-40, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21886099

RESUMEN

Fluorescence lifetime imaging microscopy (FLIM) is now routinely used for dynamic measurements of signaling events inside living cells, including detection of protein-protein interactions. An understanding of the basic physics of fluorescence lifetime measurements is required to use this technique. In this protocol, we describe both the time-correlated single photon counting and the frequency-domain methods for FLIM data acquisition and analysis. We describe calibration of both FLIM systems, and demonstrate how they are used to measure the quenched donor fluorescence lifetime that results from Förster resonance energy transfer (FRET). We then show how the FLIM-FRET methods are used to detect the dimerization of the transcription factor CCAAT/enhancer binding protein-α in live mouse pituitary cell nuclei. Notably, the factors required for accurate determination and reproducibility of lifetime measurements are described. With either method, the entire protocol including specimen preparation, imaging and data analysis takes ∼2 d.


Asunto(s)
Proteína alfa Potenciadora de Unión a CCAAT/química , Microscopía Fluorescente/métodos , Mapeo de Interacción de Proteínas/métodos , Animales , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Calibración , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Ratones , Hipófisis/citología , Hipófisis/metabolismo , Transducción de Señal
20.
PLoS One ; 6(3): e17896, 2011 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-21479270

RESUMEN

Cyan fluorescent proteins (CFPs), such as Cerulean, are widely used as donor fluorophores in Förster resonance energy transfer (FRET) experiments. Nonetheless, the most widely used variants suffer from drawbacks that include low quantum yields and unstable flurorescence. To improve the fluorescence properties of Cerulean, we used the X-ray structure to rationally target specific amino acids for optimization by site-directed mutagenesis. Optimization of residues in strands 7 and 8 of the ß-barrel improved the quantum yield of Cerulean from 0.48 to 0.60. Further optimization by incorporating the wild-type T65S mutation in the chromophore improved the quantum yield to 0.87. This variant, mCerulean3, is 20% brighter and shows greatly reduced fluorescence photoswitching behavior compared to the recently described mTurquoise fluorescent protein in vitro and in living cells. The fluorescence lifetime of mCerulean3 also fits to a single exponential time constant, making mCerulean3 a suitable choice for fluorescence lifetime microscopy experiments. Furthermore, inclusion of mCerulean3 in a fusion protein with mVenus produced FRET ratios with less variance than mTurquoise-containing fusions in living cells. Thus, mCerulean3 is a bright, photostable cyan fluorescent protein which possesses several characteristics that are highly desirable for FRET experiments.


Asunto(s)
Fluorescencia , Proteínas Luminiscentes/metabolismo , Ingeniería de Proteínas/métodos , Animales , Células COS , Supervivencia Celular , Chlorocebus aethiops , Transferencia Resonante de Energía de Fluorescencia , Vectores Genéticos , Células HeLa , Humanos , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA