Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 111(6): 903-914.e3, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36630962

RESUMEN

Macaque inferior temporal cortex neurons respond selectively to complex visual images, with recent work showing that they are also entrained reliably by the evolving content of natural movies. To what extent does temporal continuity itself shape the responses of high-level visual neurons? We addressed this question by measuring how cells in face-selective regions of the macaque visual cortex were affected by the manipulation of a movie's temporal structure. Sampling a 5-min movie at 1 s intervals, we measured neural responses to randomized, brief stimuli of different lengths, ranging from 800 ms dynamic movie snippets to 100 ms static frames. We found that the disruption of temporal continuity strongly altered neural response profiles, particularly in the early response period after stimulus onset. The results suggest that models of visual system function based on discrete and randomized visual presentations may not translate well to the brain's natural modes of operation.


Asunto(s)
Lóbulo Temporal , Corteza Visual , Animales , Macaca mulatta , Neuronas/fisiología , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa/métodos , Lóbulo Temporal/fisiología , Corteza Visual/fisiología
2.
J Neurochem ; 164(3): 284-308, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35285522

RESUMEN

The brain relies on many forms of dynamic activities in individual neurons, from synaptic transmission to electrical activity and intracellular signaling events. Monitoring these neuronal activities with high spatiotemporal resolution in the context of animal behavior is a necessary step to achieve a mechanistic understanding of brain function. With the rapid development and dissemination of highly optimized genetically encoded fluorescent sensors, a growing number of brain activities can now be visualized in vivo. To date, cellular calcium imaging, which has been largely used as a proxy for electrical activity, has become a mainstay in systems neuroscience. While challenges remain, voltage imaging of neural populations is now possible. In addition, it is becoming increasingly practical to image over half a dozen neurotransmitters, as well as certain intracellular signaling and metabolic activities. These new capabilities enable neuroscientists to test previously unattainable hypotheses and questions. This review summarizes recent progress in the development and delivery of genetically encoded fluorescent sensors, and highlights example applications in the context of in vivo imaging.


Asunto(s)
Encéfalo , Colorantes , Animales , Encéfalo/metabolismo , Colorantes/metabolismo , Neuronas/metabolismo
3.
Nature ; 611(7937): 762-768, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36352228

RESUMEN

The canonical model of striatal function predicts that animal locomotion is associated with the opposing regulation of protein kinase A (PKA) in direct and indirect pathway striatal spiny projection neurons (SPNs) by dopamine1-7. However, the precise dynamics of PKA in dorsolateral SPNs during locomotion remain to be determined. It is also unclear whether other neuromodulators are involved. Here we show that PKA activity in both types of SPNs is essential for normal locomotion. Using two-photon fluorescence lifetime imaging8-10 of a PKA sensor10 through gradient index lenses, we measured PKA activity within individual SPNs of the mouse dorsolateral striatum during locomotion. Consistent with the canonical view, dopamine activated PKA activity in direct pathway SPNs during locomotion through the dopamine D1 receptor. However, indirect pathway SPNs exhibited a greater increase in PKA activity, which was largely abolished through the blockade of adenosine A2A receptors. In agreement with these results, fibre photometry measurements of an adenosine sensor11 revealed an acute increase in extracellular adenosine during locomotion. Functionally, antagonism of dopamine or adenosine receptors resulted in distinct changes in SPN PKA activity, neuronal activity and locomotion. Together, our results suggest that acute adenosine accumulation interplays with dopamine release to orchestrate PKA activity in SPNs and proper striatal function during animal locomotion.


Asunto(s)
Adenosina , Cuerpo Estriado , Proteínas Quinasas Dependientes de AMP Cíclico , Dopamina , Locomoción , Neuronas , Animales , Ratones , Adenosina/metabolismo , Cuerpo Estriado/citología , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Dopamina/metabolismo , Locomoción/fisiología , Neuronas/enzimología , Neuronas/metabolismo , Receptores de Dopamina D1/metabolismo , Receptor de Adenosina A2A/metabolismo
4.
J Neurosci ; 42(15): 3122-3132, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35232760

RESUMEN

During visually guided behaviors, mere hundreds of milliseconds can elapse between a sensory input and its associated behavioral response. How spikes occurring at different times are integrated to drive perception and action remains poorly understood. We delivered random trains of optogenetic stimulation (white noise) to excite inhibitory interneurons in V1 of mice of both sexes while they performed a visual detection task. We then performed a reverse correlation analysis on the optogenetic stimuli to generate a neuronal-behavioral kernel, an unbiased, temporally precise estimate of how suppression of V1 spiking at different moments around the onset of a visual stimulus affects detection of that stimulus. Electrophysiological recordings enabled us to capture the effects of optogenetic stimuli on V1 responsivity and revealed that the earliest stimulus-evoked spikes are preferentially weighted for guiding behavior. These data demonstrate that white noise optogenetic stimulation is a powerful tool for understanding how patterns of spiking in neuronal populations are decoded in generating perception and action.SIGNIFICANCE STATEMENT During visually guided actions, continuous chains of neurons connect our retinas to our motoneurons. To unravel circuit contributions to behavior, it is crucial to establish the relative functional position(s) that different neural structures occupy in processing and relaying the signals that support rapid, precise responses. To address this question, we randomly inhibited activity in mouse V1 throughout the stimulus-response cycle while the animals did many repetitions of a visual task. The period that led to impaired performance corresponded to the earliest stimulus-driven response in V1, with no effect of inhibition immediately before or during late stages of the stimulus-driven response. This approach offers experimenters a powerful method for uncovering the temporal weighting of spikes from stimulus to response.


Asunto(s)
Optogenética , Corteza Visual , Animales , Fenómenos Electrofisiológicos , Femenino , Interneuronas/fisiología , Masculino , Ratones , Neuronas/fisiología , Estimulación Luminosa , Corteza Visual/fisiología , Percepción Visual/fisiología
5.
J Neurosci Methods ; 362: 109298, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34339753

RESUMEN

Cyclic adenosine monophosphate (cAMP) is a universal second messenger that plays a crucial role in diverse biological functions, ranging from transcription to neuronal plasticity, and from development to learning and memory. In the nervous system, cAMP integrates inputs from many neuromodulators across a wide range of timescales - from seconds to hours - to modulate neuronal excitability and plasticity in brain circuits during different animal behavioral states. cAMP signaling events are both cell-specific and subcellularly compartmentalized. The same stimulus may result in different, sometimes opposite, cAMP dynamics in different cells or subcellular compartments. Additionally, the activity of protein kinase A (PKA), a major cAMP effector, is also spatiotemporally regulated. For these reasons, many laboratories have made great strides toward visualizing the intracellular dynamics of cAMP and PKA. To date, more than 80 genetically encoded sensors, including original and improved variants, have been published. It is starting to become possible to visualize cAMP and PKA signaling events in vivo, which is required to study behaviorally relevant cAMP/PKA signaling mechanisms. Despite significant progress, further developments are needed to enhance the signal-to-noise ratio and practical utility of these sensors. This review summarizes the recent advances and challenges in genetically encoded cAMP and PKA sensors with an emphasis on in vivo imaging in the brain during behavior.


Asunto(s)
Encéfalo , Transducción de Señal , Animales , Encéfalo/diagnóstico por imagen , Aprendizaje , Plasticidad Neuronal , Fosforilación
6.
Restor Neurol Neurosci ; 36(1): 45-57, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29439368

RESUMEN

BACKGROUND: The acetylcholinesterase inhibitor (AChEI) donepezil (DON) is recommended as a potential treatment for cognition after clinical traumatic brain injury (TBI) and therefore may be prescribed as an adjunct therapy during rehabilitation. However, a dose-response study evaluating DON after a controlled cortical impact (CCI) injury in rats did not reveal cognitive benefits. OBJECTIVE: The aim of this study was to determine the effect of DON on behavioral and histological outcome when combined with environmental enrichment (EE), a preclinical model of neurorehabilitation. It was hypothesized that the combined treatments would produce a synergistic effect yielding improved recovery over neurorehabilitation alone. METHODS: Isoflurane-anesthetized adult male rats received a CCI or sham injury and then were randomly assigned to EE or standard (STD) housing plus systemic injections of DON (0.25 mg/kg) or vehicle (VEH; 1.0 mL/kg saline) once daily for 19 days beginning 24 hr after injury. Function was assessed by established motor and cognitive tests on post-injury days 1-5 and 14-19, respectively. Cortical lesion volume was quantified on day 19. RESULTS: DON was ineffective when administered alone. In contrast, EE conferred significant motor and cognitive benefits, and reduced cortical lesion volume vs. STD (p < 0.05). Combining the therapies weakened the efficacy of rehabilitation as revealed by diminished motor and cognitive recovery in the TBI+EE+DON group vs. the TBI+EE+VEH group (p < 0.05). CONCLUSION: These data replicate previous findings showing that EE is beneficial and DON is ineffective after CCI and add to the literature a novel and unpredicted finding that supports neither the hypothesis nor the use of DON for TBI. Investigation of other AChEIs after CCI injury is necessary to gain further insight into the value of this therapeutic strategy.


Asunto(s)
Lesiones Traumáticas del Encéfalo/complicaciones , Trastornos del Conocimiento , Ambiente , Indanos/uso terapéutico , Trastornos Mentales , Nootrópicos/uso terapéutico , Piperidinas/uso terapéutico , Análisis de Varianza , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/rehabilitación , Modelos Animales de Enfermedad , Donepezilo , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/etiología , Trastornos Mentales/rehabilitación , Actividad Motora/efectos de los fármacos , Examen Neurológico , Desempeño Psicomotor/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Prueba de Desempeño de Rotación con Aceleración Constante , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...