Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Pathog ; 186: 106474, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38070627

RESUMEN

The present study aimed to evaluate whether a moderate dose of aflatoxin B1 in pigs' diet interferes with pigs' growth and health in the nursery phase and whether an anti-mycotoxin mixture minimizes the adverse effects of the toxin. One blend with Saccharomyces cerevisiae lysate, zeolite, silicon dioxide, propylene glycol, Carduus marianus extract, soy lecithin, and carbonate was used as an anti-mycotoxin. Four treatments, with six repetitions per treatment and three pigs/pen: Afla0-AntiMyc0 - negative control (without aflatoxin); Afla500-AntiMyc0 - positive control (500 ppb of aflatoxin); Afla0-AntiMyc1000 - 1000 mg/kg of anti-mycotoxin blend; Afla500-AntiMyc1000 - 500 ppb aflatoxin +1000 mg/kg of anti-mycotoxin blend. It was observed that pigs in the positive control (Afla500-AntiMyc0) had lower body weight and weight gain when compared to the other treatments during the experimental period. Also, pigs from Afla500-AntiMyc0 had lower feed intake between days 1-20 and 1 to 30 than Afla0-AntiMyc0. The pigs from Afla500-AntiMyc0 had higher levels of liver enzymes aspartate aminotransferase and alanine aminotransferase compared to other treatments. The pigs from Afla500-AntiMyc0 had higher villus height than the other treatments, while the folded size was smaller in this treatment. Crypts were deeper in the intestines of pigs in both treatments that consumed aflatoxin. In general, it is concluded that the intake of aflatoxin B1 by nursery pigs has negative impacts on the health and, consequently, the animals' growth performance; however, the addition of the contaminated feed with an anti-mycotoxin blend was able to protect the pigs, minimizing the adverse effects caused by the mycotoxin.


Asunto(s)
Aflatoxina B1 , Micotoxinas , Porcinos , Animales , Aflatoxina B1/toxicidad , Aspergillus flavus , Dieta/veterinaria , Aumento de Peso , Alimentación Animal/análisis
2.
Animals (Basel) ; 13(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37835616

RESUMEN

(1) Background: This study's objective was to determine whether adding vegetable biocholine (VB) to pigs' diets would minimize the negative effects caused by daily aflatoxin (B1 + B2) intake. (2) Methods: We used seventy-two whole male pigs weaned at an average of 26 days and divided them into four groups with six replicates each (2 × 2 factorial). The treatments were identified as Afla0VB0 (negative control, without aflatoxin and without VB); Afla500VB0 (positive control, 500 µg/kg of aflatoxins; Afla0VB800 (800 mg/kg of VB); and Afla500VB800 (500 µg/kg of aflatoxin +800 mg/kg of VB). (3) Results: In the first 20 days of the experiment, only the pigs from Afla500VB0 had less weight gain and less feed consumption, different from the 30th to 40th day, when all treatments had lower performance than the negative control. In the liver, higher levels of oxygen-reactive species and lipid peroxidation were observed in Afla500VB0, associated with greater activity of the enzymes alanine aminotransferase and aspartate aminotransferase. In the jejunum, oxidative stress was associated with nitrous stress in Afla500VB0. An increase in splenic glutathione S-transferase activity in the Afla500VB800 animals was observed. (4) Conclusions: Consuming a diet contaminated with 500 µg/kg of aflatoxin influences the health and performance in the nursing phase in a silent way; however, it generates high economic losses for producers. When VB was added to the pigs' diet in the face of an aflatoxin challenge, it showed hepatoprotective potential.

3.
Res Vet Sci ; 147: 28-36, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35413627

RESUMEN

This study aimed to determine whether the addition of Ilex paraguariensis residue to the basal diet of laying hens improves bird health, production, fatty acids, egg quality, and transfer of chlorogenic acids to the egg. One hundred twenty birds of the Hy-line lineage were used, divided into five groups with six replicates and four birds per replicate, as follows: T0 (control group, without IPPR supplementation), T0.5 (basal diet plus 0.5% of IPPR), T1 (basal diet plus 1% IPPR), T1.5 (basal diet plus 1.5% IPPR), and T2 (basal diet plus 2% IPPR), for two consecutive cycles of 21 days each. The productive performance of the birds, physicochemical composition of eggs, fatty acid profile, the concentration of chlorogenic acids in eggs, leukocyte count, serum biochemistry, oxidant and antioxidant status, total bacterial count in eggs, and feces were evaluated at 21 and 42 days of the experiment. The addition of IPPR to the birds' diet no-change eggs production and feed conversion. In the egg yolks of birds that consumed IPPR, there were chlorogenic acids. There was a reduction in the total bacterial count in the feces and eggshells of the birds that received 2% of the IPPR. IPPR intake also reflected a reduction in total saturated fatty acid levels and increased monounsaturated fatty acids. These findings suggest that IPPR is a compelling alternative for laying hens; however, its ingestion also has negative effects that are discussed in below. Chlorogenic acids in the egg are desirable, as these phenolics have nutraceutical effects in humans.


Asunto(s)
Ácidos Grasos , Ilex paraguariensis , Alimentación Animal/análisis , Animales , Pollos , Ácido Clorogénico/análisis , Dieta/veterinaria , Suplementos Dietéticos , Yema de Huevo/química , Huevos , Femenino , Óvulo
4.
Microb Pathog ; 152: 104590, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33127536

RESUMEN

The aim of this study was to determine whether addition of a phytogenic blend in the feed of broilers to replace conventional antimicrobials as a performance enhancer would improve or maintain productive efficiency. The phytogenic blend was based on curcuminoids, cinnamaldehyde and glycerol monolaurate. We used 480 birds divided into three groups with eight repetitions per group and 20 birds per repetition. The groups were identified as antimicrobial-treated: basal feed with antibiotics and coccidiostatic agents; phytogenic blend: basal feed with blend; and control, only basal feed. Zootechnical performance was measured on days from 1 to 42, with body weight measured at days 1, 7, 21 and 42. We collected excreta for parasitological analysis and total bacterial counts to determine if the phytogenic blend had kept the bacteria and coccidia in counts smaller or similar to that resulting from use of conventional performance enhancer. Other variables were also measured to complement our research, i.e., if the consumption of bend is good for the health of the birds (without causing toxicity and negatively altering the metabolism and intestinal morphometry) and does not interfere in the quality of the meat. Because the bacteria are often opportunistic, we challenged all birds at 23 days of age with high doses of oral oocysts (28,000 oocysts). Birds supplemented with the blend showed inferior performance compared to birds in the control and antimicrobial treated group (P < 0.05). We found a smaller number of oocysts of Eimeria spp. in the excreta at 42 days in the treatment with blend and antimicrobial treated group (P < 0.05). In terms of total bacterial counts, there were lower counts in the birds of the blend group than in the control group (P < 0.05). The blend increased the yellow intensity and the luminosity of the meat (P < 0.05), as well as cooking weight losses (P < 0.05) compared those of the control. We observed higher total levels of saturated fatty acids in meat from the blend and antimicrobial treated group (P < 0.05), as well as lower levels of monounsaturated fatty acids in the blend group (P < 0.05). The inclusion of a phytogenic blend to replace conventional antimicrobials and anticoccidial agents in the diet of chickens was able to control bacteria as well as coccidia; however, it ends up harming health and production.


Asunto(s)
Coccidiosis , Eimeria , Enfermedades de las Aves de Corral , Alimentación Animal/análisis , Animales , Pollos , Dieta/veterinaria , Suplementos Dietéticos , Carne/análisis
5.
Microb Pathog ; 149: 104517, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33007430

RESUMEN

Mycotoxins represent substantial challenges to the farming industry. These include toxins produced by Fusarium fungi, particularly trichothecenes (toxin T-2) and fumonisin (FB1). In the present study, we determined the effects of addition on Saccharomyces cerevisiae lysate (SCL) added to feed contaminated with T-2 and FB1 in terms of health, productive efficiency, and egg laying quality. We used 60 Hy-line Brown laying hens, and divided them into five groups with four repetitions per group and three birds per repetition. There was one group with no contamination with toxin (NoC). The four other groups included combinations of mycotoxin (4 ppm T-2, and 20 ppm FB1): A contamination group was used as control (the C+ group), and another two contained 500 g/ton of SCL (Detoxa Plus®) (the C + D500 group) or 1000 g/ton of SCL (the C + D1000 group). Finally, one group received feed containing 500 g/ton of Detoxa Plus® and 1000 g/ton of Uniwall® MOS 25 (the C + D500 + U1000 group). The experimental period was 84 days, divided into three productive cycles of 28 days each. The NoC hens had greater egg production than the other groups. Hens that consumed feed with SCL had greater egg production than did the C+ group. The NoC hens produced eggs with greater weights than did the C hens; however, C + D1000 and C + D500 + U1000 birds produced greater egg weights than did the C+ group. The C+ group produced lower egg masses than did the NoC and C + D500 + U1000 groups. The feed intake (FI) was lower in hens that ingested mycotoxin. The use of SCL in feed minimized the negative effects of mycotoxin on feed conversion ratio (FI/dozen). Effects of treatment were detected for feed conversion ratio (kg/kg). The hens that consumed mycotoxin had lower shell resistance and thickness compared to those in the NoC group. The red color of egg yolk was greater in the control groups. There were fluctuations in levels of liver enzymes when birds consumed mycotoxin (sometimes reduced and sometimes increased); nevertheless, the cumulative effect increased the activity of alanine aminotransferase. The serum concentration of reactive oxygen species was greater in hens that ingested mycotoxin only on d 84 compared to the NoC group. Serum glutathione S-transferase activity was greater on d 56 in C + D500 and C + D1000 hens than in the others. We conclude that, in general, the consumption of mycotoxin impaired the performance and quality of the eggs of the hens; the addition of the S. cerevisiae lysate and the addition organic acids, yeast cell wall and mineral carrier minimized some of the negative effects caused by T-2 and FB1.


Asunto(s)
Fumonisinas , Fusarium , Micotoxinas , Toxina T-2 , Alimentación Animal/análisis , Animales , Pollos , Dieta/veterinaria , Femenino , Aves de Corral , Saccharomyces cerevisiae
6.
J Therm Biol ; 91: 102618, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32716868

RESUMEN

Curcumin is an herbal component with several biological properties, and we highlight here the thermal stability, antioxidant and anti-inflammatory activity. We determined whether curcumin supplementation in the diets of laying hens under cold stress and naturally infected with Escherichia coli would control infection, and would have positive effects on overall health, as well as egg production and quality. We allocated 36 chickens that had been naturally infected with E. coli into two groups, with six replicates and three chickens per repetition: control group and curcumin group (200 mg curcumin/kg). The experimental period lasted 42 days, and fecal, blood and egg samples were collected at 1, 21 and 42 days We found that feces and eggs had lower total bacterial counts, E. coli counts and total coliform counts in the curcumin group at 21 and 42 days. In fresh eggs, the brightness and yellow intensity (b+) were significantly higher in the curcumin group. In stored eggs, higher specific gravity, albumen height and lower yolk pH were observed in the curcumin group. Fresh eggs collected and stored on day 42 showed lower levels of lipid peroxidation in the curcumin group, while the total antioxidant capacity in the stored eggs was significantly higher in the curcumin group. The curcumin group showed lower total leukocyte counts as a result of lower numbers of neutrophils and lymphocytes, as well as lower levels of total protein, alkaline phosphatase and alanine aminotransferase. Lower serum lipoperoxidation at 42 days was observed in the curcumin group, probably because of the higher activity of glutathione peroxidase and glutathione transferase in other words, because of antioxidant stimulation. Taken together, our findings suggest that curcumin supplementation in laying hens under cold stress and with colibacillosis has positive effects on infection control because of antioxidant stimulation.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Pollos/fisiología , Respuesta al Choque por Frío/efectos de los fármacos , Curcumina/farmacología , Aclimatación , Animales , Antiinfecciosos/administración & dosificación , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Pollos/metabolismo , Frío , Curcumina/administración & dosificación , Suplementos Dietéticos , Huevos/microbiología , Huevos/normas , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Femenino , Peroxidación de Lípido/efectos de los fármacos , Linfocitos/efectos de los fármacos , Neutrófilos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...