Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(14): 5078-5083, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-36972336

RESUMEN

We have studied the calcium phosphate precipitation reaction by producing chemical gardens in a controlled manner using a three-dimensional flow-driven technique. The injection of the phosphate containing solution into the calcium ion reservoir has resulted in structures varying from membranes to crystals. Dynamical phase diagrams are constructed by varying chemical composition and flow rates from which three different growth mechanisms have been revealed. The microstructural analysis by scanning electron microscopy and powder X-ray diffraction confirmed the morphological transition from membrane tubes to crystalline branches upon decreasing pH.

2.
Pharmaceutics ; 14(12)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36559217

RESUMEN

A two-component injectable hydrogel was suitably prepared for the encapsulation and prolonged release of tilorone which is an antimuscular atrophy drug. The rapid (7-45 s, depending on the polymer concentration) in situ solidifications of the hydrogel were evoked by the evolving Schiff-base bonds between the aldehyde groups of modified PVA (4-formyl benzoate PVA, PVA-CHO, 5.9 mol% functionalization degree) and the amino groups of 3-mercaptopropionate chitosan (CHIT-SH). The successful modification of the initial polymers was confirmed by both FTIR and NMR measurements; moreover, a new peak appeared in the FTIR spectrum of the 10% w/v PVA-CHO/CHIT-SH hydrogel at 1647 cm-1, indicating the formation of a Schiff base (-CH=N-) and confirming the interaction between the NH2 groups of CHIT-SH and the CHO groups of PVA-CHO for the formation of the dynamic hydrogel. The reaction between the NH2 and CHO groups of the modified biopolymers resulted in a significant increase in the hydrogel's viscosity which was more than one thousand times greater (9800 mPa·s) than that of the used polymer solutions, which have a viscosity of only 4.6 and 5.8 mPa·s, respectively. Furthermore, the initial chitosan was modified with mercaptopropionic acid (thiol content = 201.85 ± 12 µmol/g) to increase the mucoadhesive properties of the hydrogel. The thiolated chitosan showed a significant increase (~600 mN/mm) in adhesion to the pig intestinal membrane compared to the initial one (~300 mN/mm). The in vitro release of tilorone from the hydrogel was controlled with the crosslinking density/concentration of the hydrogel; the 10% w/v PVA-CHO/CHIT-SH hydrogel had the slowest releasing (21.7 h-1/2) rate, while the 2% w/v PVA-CHO/CHIT-SH hydrogel had the fastest releasing rate (34.6 h-1/2). Due to the characteristics of these hydrogels, their future uses include tissue regeneration scaffolds, wound dressings for skin injuries, and injectable or in situ forming drug delivery systems. Eventually, we hope that the developed hydrogel will be useful in the local treatment of muscle atrophy, such as laryngotracheal atrophy.

3.
Int J Pharm ; 626: 122188, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36089213

RESUMEN

The therapeutic application of nasal powders requires the development of novel mucoadhesive excipients. Thiolated polymers exhibit significant potential for this purpose based on their increased mucoadhesion attributable to the formation of disulfide bonds between the polymer and mucus surface. A chitosan-cysteine (chit-cyst) conjugate was synthesized using 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxysuccinimide in aqueous solution. The synthetic yield and synthesis conditions were optimized, and the efficiency of the reaction was evaluated. Rheological measurements revealed that the polymer derivative exhibited increased mucoadhesive properties in comparison to chitosan powder. To characterize the polymer, a novel purity investigation method was developed and verified to investigate the residual l-cysteine content. The results revealed that l-cysteine was not detectable in the resultant polymer matrix. Based on the cytotoxicity studies, chit-cyst was found to be safe for nasal application. Thereafter, nasal powder formulations were prepared using the polymer and the antiparkinsonian drug levodopa methyl ester hydrochloride by freeze-drying to investigate their nasal applicability. Based on the in vitro studies, these powders might be suitable for reducing the off periods of Parkinson's disease because of their expected higher in vivo mucoadhesion.


Asunto(s)
Quitosano , Quistes , Antiparkinsonianos , Cisteína/química , Disulfuros/química , Excipientes/química , Humanos , Polímeros/química , Polvos , Compuestos de Sulfhidrilo/química
4.
Int J Mol Sci ; 23(12)2022 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-35743251

RESUMEN

Herein we present the synthesis of a polymeric prodrug nanomaterial capable of spontaneous, self-assembled nanoparticle formation and of the conjugation (encapsulation) of drugs with amino and/or carboxyl and/or hydroxyl groups via ester and/or amide linkage. Mitomycin C (MMC) a versatile drug with antibiotic, antibacterial and antineoplastic properties, was used to prove this concept. The in vitro drug release experiments showed a fast release for the pure MMC (k = 49.59 h-n); however, a significantly lower MMC dissolution rate (k = 2.25, 1.46, and 1.35 h-n) was obtained for the nanoparticles with increased cross-link density (3, 10, 21%). The successful modification and conjugation reactions were confirmed using FTIR and EDX measurements, while the mucoadhesive properties of the self-assembled particles synthesized in a simple one-pot reaction were proved by rheological measurement. The prepared biocompatible polymeric prodrugs are very promising and applicable as a drug delivery system (DDS) and useful in the area of cancer treatment.


Asunto(s)
Nanopartículas , Profármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sistemas de Liberación de Medicamentos , Mitomicina/farmacología , Polímeros , Profármacos/farmacología , Profármacos/uso terapéutico
5.
Langmuir ; 38(18): 5404-5417, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35442685

RESUMEN

Encapsulation of hydrophilic and amphiphilic drugs in appropriate colloidal carrier systems for sustained release is an emerging problem. In general, hydrophobic bioactive substances tend to accumulate in water-immiscible polymeric domains, and the release process is controlled by their low aqueous solubility and limited diffusion from the nanocarrier matrix. Conversely, hydrophilic/amphiphilic drugs are typically water-soluble and insoluble in numerous polymers. Therefore, a core-shell approach─nanocarriers comprising an internal core and external shell microenvironments of different properties─can be exploited for hydrophilic/amphiphilic drugs. To produce colloidally stable poly(lactic-co-glycolic) (PLGA) nanoparticles for mitomycin C (MMC) delivery and controlled release, a unique class of amphiphilic polymers─hydrophobically functionalized polyelectrolytes─were utilized as shell-forming materials, comprising both stabilization via electrostatic repulsive forces and anchoring to the core via hydrophobic interactions. Undoubtedly, the use of these polymeric building blocks for the core-shell approach contributes to the enhancement of the payload chemical stability and sustained release profiles. The studied nanoparticles were prepared via nanoprecipitation of the PLGA polymer and were dissolved in acetone as a good solvent and in an aqueous solution containing hydrophobically functionalized poly(4-styrenesulfonic-co-maleic acid) and poly(acrylic acid) of differing hydrophilic-lipophilic balance values. The type of the hydrophobically functionalized polyelectrolyte (HF-PE) was crucial for the chemical stability of the payload─derivatives of poly(acrylic acid) were found to cause very rapid degradation (hydrolysis) of MMC, in contrast to poly(4-styrenesulfonic-co-maleic acid). The present contribution allowed us to gain crucial information about novel colloidal nanocarrier systems for MMC delivery, especially in the fields of optimal HF-PE concentrations, appropriate core and shell building materials, and the colloidal and chemical stability of the system.


Asunto(s)
Mitomicina , Nanopartículas , Preparaciones de Acción Retardada/química , Portadores de Fármacos/química , Nanopartículas/química , Polielectrolitos , Poliglactina 910 , Agua/química
6.
Adv Colloid Interface Sci ; 303: 102657, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35364433

RESUMEN

The affinity of macroscopic solid surfaces or dispersed nano- and bioparticles towards liquids plays a key role in many areas from fluid transport to interactions of the cells with phase boundaries. Forces between solid interfaces in water become especially important when the surface texture or particles are in the colloidal size range. Although, solid-liquid interactions are still prioritized subjects of materials science and therefore are extensively studied, the related literature still lacks in conclusive approaches, which involve as much information on fundamental aspects as on recent experimental findings related to influencing the wetting and other wetting-related properties and applications of different surfaces. The aim of this review is to fill this gap by shedding light on the mechanism-of-action and design principles of different, state-of-the-art functional macroscopic surfaces, ranging from self-cleaning, photoreactive or antimicrobial coatings to emulsion separation membranes, as these surfaces are gaining distinguished attention during the ongoing global environmental and epidemic crises. As there are increasing numbers of examples for stimulus-responsive surfaces and their interactions with liquids in the literature, as well, this overview also covers different external stimulus-responsive systems, regarding their mechanistic principles and application possibilities.


Asunto(s)
Agua , Emulsiones , Humanos , Humectabilidad
7.
Int J Pharm ; 618: 121653, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35278604

RESUMEN

In the present study, we demonstrate that well-known molecular weight-dependent solubility properties of a polymer can also be used in the field of controlled drug delivery. To prove this, poly(ethylene succinate) (PES) polyesters with polycondensation time regulated molecular weights were synthesized via catalyst-free direct polymerization in an equimolar ratio of ethylene glycol and succinic acid monomers at 185 °C. DSC and contact angle measurements revealed that increasing the molecular weight (Mw, 4.3-5.05 kDa) through the polymerization time (40-80 min) increased the thermal stability (Tm= ∼61-80 °C) and slightly the hydrophobicity (Θw= ∼27-41°) of the obtained aliphatic polyester. Next, this biodegradable polymer was used for the encapsulation of Ca2+ channel blocker Nimodipine (NIMO) to overcome the poor water solubility and enhance the bioavailability of the drug. The drug/ polymer compatibility was proved by the means of solubility (δ) and Flory-Huggins interaction (miscibility) parameters (χ). The nanoprecipitation encapsulation of NIMO into PES with increasing Mw resulted in the formation of spherical 270 ± 103 nm NIMO-loaded PES nanoparticles (NPs). Furthermore, based on the XRD measurements, the encapsulated form of NIMO-loaded PES NPs showed lower drug crystallinity, which enhanced not only the water solubility but even the water stability of the NIMO in an aqueous medium. The in-vitro drug release experiments demonstrated that the release of NIMO drug could be accelerated or even prolonged by the molecular weights of PES as well. Due to the low crystallinity of PES polyester and low particle size of the encapsulated NIMO drug led to enhance solubility and releasing process of NIMO from PES with lower Mw (4.3 kDa and 4.5 kDa) compared to pure crystalline NIMO. However, further increasing the molecular weight (5.05 kDa) was already reduced the amount of drug release that provides the prolonged therapeutic effect and enhances the bioavailability of the NIMO drug.


Asunto(s)
Nanopartículas , Poliésteres , Portadores de Fármacos/química , Liberación de Fármacos , Peso Molecular , Nanopartículas/química , Nimodipina , Tamaño de la Partícula , Poliésteres/química , Polietilenglicoles/química , Polietilenos , Polímeros , Succinatos , Agua
8.
Front Bioeng Biotechnol ; 9: 709462, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34660548

RESUMEN

The recent coronavirus pandemic pointed out the vulnerability of humanity to new emerging infectious diseases. Experts warn that future pandemics may emerge more frequently with greater devastating effects on population health and the world economy. Although viruses are unable to propagate on lifeless surfaces, they can retain their infectivity and spread further on contact with these surfaces. The objective of our study is to analyze photoreactive composite films that exert antiviral effects upon illumination. Reactive plasmonic titanium dioxide-based polymeric nanocomposite film was prepared with a thickness of 1-1.5 µm, which produces reactive oxygen species (ROS) under visible light irradiation (λ ≥ 435 nm). These species are suitable for photooxidation of adsorbed organic molecules (e.g., benzoic acid) on the nanocomposite surface. Moreover, high molecular weight proteins are also degraded or partially oxidized in this process on the composite surface. Since the Ag0-TiO2/polymer composite film used showed excellent reactivity in the formation of OH• radicals, the photocatalytic effect on high molecular weight (M = ∼66.000 Da) bovine serum albumin (BSA) protein was investigated. Given that changes in the structure of the protein were observed upon exposure to light, we assumed virucidal effect of the illuminated photoreactive composite film. We tested this hypothesis using an airborne-transmitted herpesvirus. As a result, we obtained a drastic decrease in infection capability of the virus on the photoreactive surface compared to the control surface.

9.
Pharmaceutics ; 13(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34371730

RESUMEN

BACKGROUND: The drug release of antiparkinsonian drugs is an important issue during the formulation process because proper release kinetics can help to reduce the off periods of Parkinson's disease. A 2-factor, 3-level (32) full-factorial design was conducted to evaluate statistically the influence of the hydrophobicity of mesoporous silica on drug release. METHODS: Hydrophobization was evaluated by different methods, such as contact angle measurement, infrared spectroscopy and charge titration. After loading the drug (levodopa methyl ester hydrochloride, melevodopa hydrochloride, LDME) into the mesopores, drug content, particle size, specific surface area and homogeneity of the products were also analyzed. The amorphous state of LDME was verified by X-ray diffractometry and differential scanning calorimetry. RESULTS: Drug release was characterized by a model-independent method using the so-called initial release rate parameter, as detailed in the article. The adaptability of this method was verified; the model fitted closely to the actual release results according to the similarity factor, independently of the release kinetics. CONCLUSIONS: The API was successfully loaded into the silica, resulting in a reduced surface area. The release studies indicated that the release rate significantly decreased (p < 0.05) with increasing hydrophobicity. The products with controlled release can reduce the off period frequency.

10.
Polymers (Basel) ; 13(16)2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-34451264

RESUMEN

Poly(ethylene succinate) (PES) is one of the most promising biodegradable and biocompatible polyesters and is widely used in different biomedical applications. However, little information is available on its solubility and precipitation properties, despite that these solution behavior properties affect its applicability. In order to systematically study these effects, biodegradable and biocompatible poly(ethylene succinate) (PES) was synthesized using ethylene glycol and succinic acid monomers with an equimolar ratio. Despite the optimized reaction temperature (T = 185 °C) of the direct condensation polymerization, relatively low molecular mass values were achieved without using a catalyst, and the Mn was adjustable with the reaction time (40-100 min) in the range of ~850 and ~1300 Da. The obtained crude products were purified by precipitation from THF ("good" solvent) with excess of methanol ("bad" solvent). The solvents for PES oligomers purification were chosen according to the calculated values of solubility parameters by different approaches (Fedors, Hoy and Hoftyzer-van Krevelen). The theta-solvent composition of the PES solution was 0.3 v/v% water and 0.7 v/v% DMSO in this binary mixture. These measurements were also allowed to determine important parameters such as the coefficients A (=0.67) and B (=3.69 × 104) from the Schulz equation, or the Kη (=8.22 × 10-2) and α (=0.52) constants from the Kuhn-Mark-Houwink equation. Hopefully, the prepared PES with different molecular weights is a promising candidate for biomedical applications and the reported data and constants are useful for other researchers who work with this promising polyester.

11.
Polymers (Basel) ; 12(9)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32839403

RESUMEN

With the increasing demand for liquid manipulation and microfluidic techniques, surfaces with real-time tunable wetting properties are becoming the focus of materials science researches. In this study, we present a simple preparation method for a 0.5-4 µm carbonyl iron (carbonyl Fe) loaded polydimethylsiloxane (PDMS)-based magnetic composite coating with magnetic field-tailored wetting properties. Moreover, the embedded 6.3-16.7 wt.% Ag-TiO2 plasmonic photocatalyst (d~50 nm) content provides additional visible light photoreactivity to the external stimuli-responsive composite grass surfaces, while the efficiency of this photocatalytic behavior also turned out to be dependent on the external magnetic field. The inclusion of the photocatalyst introduced hierarchical surface roughness to the micro-grass, resulting in the broadening of the achievable contact and sliding angle ranges. The photocatalyst-infused coatings are also capable of catching and releasing water droplets, which alongside their multifunctional (photocatalytic activity and tunable wetting characteristics) nature makes surfaces of this kind the novel sophisticated tools of liquid manipulation.

12.
Environ Pollut ; 266(Pt 3): 115285, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32805681

RESUMEN

Disastrous oil spills cause severe environmental issues. The shortcomings of current cleaning methods for remediating oil have prompted the latest research drive to create intelligent nanoparticles that absorb oil. We, therefore, synthesized 197 ± 50 nm floatable photoreactive hybrid nanoparticles with Ag-TiO2 plasmonic photocatalyst (Eg = 3.08 eV) content to eliminate interfacial water pollutants, especially toluene-based artificial oil spill. We found that the composite particles have non-wetting properties in the aqueous media and float easily on the surface of the water due to the moderate hydrophobic nature (Θ = 113°) of the matrix of polystyrene, and these properties lead to elevated absorption of the interfacial organic pollutants (e.g., mineral oil). We showed that (28.5 mol%) divinylbenzene cross-linker content was required for adequate swelling capacity (2.15 g/g), whereas incorporated 15.8% Ag-TiO2 content in the swollen particles was enough for efficient photodegradation of the artificial oil spill under 150 min LED light (λmax = 405 nm) irradiation. The swollen polymer particles with embedded 32 ± 7 nm Ag-TiO2 content increase the efficiency of photooxidation by increased the direct contact between both the photocatalysts and the artificial oil spill. Finally, it was also presented that the composite particles destroy themselves: after approximately one and a half months of continuous LED light irradiation, the organic polymer component of the composite was almost completely (88.5%) photodegraded by the incorporated inorganic photocatalyst particles.


Asunto(s)
Nanopartículas , Contaminantes del Agua , Catálisis , Fotólisis , Titanio
13.
Pharmaceutics ; 12(8)2020 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-32722099

RESUMEN

Our study aimed to develop an "ex tempore" reconstitutable, viscosity enhancer- and preservative-free meloxicam (MEL)-loaded polymeric micelle formulation, via Quality by Design (QbD) approach, exploiting the nose-to-brain pathway, as a suitable tool in the treatment of neuroinflammation. The anti-neuroinflammatory effect of nose-to-brain NSAID polymeric micelles was not studied previously, therefore its investigation is promising. Critical product parameters, encapsulation efficiency (89.4%), Z-average (101.22 ± 2.8 nm) and polydispersity index (0.149 ± 0.7) and zeta potential (-25.2 ± 0.4 mV) met the requirements of the intranasal drug delivery system (nanoDDS) and the targeted profile liquid formulation was transformed into a solid preservative-free product by freeze-drying. The viscosity (32.5 ± 0.28 mPas) and hypotonic osmolality (240 mOsmol/L) of the reconstituted formulation provides proper and enhanced absorption and probably guarantees the administration of the liquid dosage form (nasal drop and spray). The developed formulation resulted in more than 20 times faster MEL dissolution rate and five-fold higher nasal permeability compared to starting MEL. The prediction of IVIVC confirmed the great potential for in vivo brain distribution of MEL. The nose-to-brain delivery of NSAIDs such as MEL by means of nanoDDS as polymeric micelles offers an innovative opportunity to treat neuroinflammation more effectively.

14.
Eur J Pharm Sci ; 123: 79-88, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30026092

RESUMEN

The pH-responsive intelligent drug release facility of hydrophobically modified chitosan nanoparticles (Chit NPs) (d = 5.2 ±â€¯1.1 nm) was presented in the case of poorly water soluble Ca2+ channel blocker nimodipine (NIMO) drug molecules. The adequate pH-sensitivity, i.e. the suitable drug carrier properties of the initial hydrophilic Chit were achieved by reductive amination of Chit with hexanal (C6-) and dodecanal (C12-) aldehydes. The successful modifications of the macromolecule were evidenced via FTIR measurements: the band appearing at 1412 cm-1 (CN stretching in aliphatic amines) in the cases of the hydrophobically modified Chit samples shows that the CN bond successfully formed between the Chit and the aldehydes. Hydrophobization of the polymer unambiguously led to lower water contents with lower intermolecular interactions in the prepared hydrogel matrix: the initial hydrophilic Chit has the highest water content (78.6 wt%) and the increasing hydrophobicity of the polymer resulted in decreasing water content (C6-chit.: 74.2 wt% and C12-chit.: 47.1 wt%). Furthermore, it was established that the length of the side chain of the aldehyde influences the pH-dependent solubility properties of the Chit. Transparent homogenous polymer solution was obtained at lower pH, while at higher pH the formation of polymer (nano)particles was determined and the corresponding cut-off pH values showed decreasing tendency with increasing hydrophobic feature (pH = 7.47, 6.73 and 2.49 for initial Chit, C6-chit and C12-chit, respectively). Next the poorly water soluble NIMO drug was encapsulated with the C6-chit with adequate pH-sensitive properties. The polymer-stabilized NIMO particles with 10 wt% NIMO content resulted in stable dispersion in aqueous phase, the formation of polymer shell increased in the water solubility/dispersibility of the initial hydrophobic drug. According to the drug release experiments, we clearly confirmed that the encapsulated low crystallinity NIMO drug remained closed in the polymer NPs at normal tissue pH (pH = 7.4, PBS buffer, physiological condition) but at pH < 6.5 which is typical for seriously ischemic brain tissue, 93.6% of the available 0.14 mg/ml NIMO was released into the buffer solution under 8 h release time. According to this in vitro study, the presented pH-sensitive drug carrier system could be useful to selectively target ischemic brain regions characterized by acidosis, to achieve neuroprotection at tissue zones at risk of injury, without any undesirable side effects caused by systemic drug administration.


Asunto(s)
Bloqueadores de los Canales de Calcio/administración & dosificación , Quitosano/química , Portadores de Fármacos/química , Nanopartículas/química , Nimodipina/administración & dosificación , Acidosis , Bloqueadores de los Canales de Calcio/química , Liberación de Fármacos , Humanos , Nimodipina/química
15.
J Nanosci Nanotechnol ; 18(6): 3916-3924, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29442727

RESUMEN

Failure of dental implants is caused mainly by peri-implant infections resulting in loss of supporting bone. Since there is no ideal therapy of peri-implantitis, the focus of research has been shifted toward better prevention and the development of antibacterial surfaces. In our study we examined the attachment and proliferation of primary epithelial and MG-63 osteosarcoma cells on Ti dental implants coated with photocatalytic nanohybrid films. Two polyacrylate resin based layers were investigated on commercially pure (CP4) Ti discs: 60 wt% TiO2/40 wt% copolymer and 60 wt% Ag-TiO2/40 wt% copolymer ([Ag] = 0,001 wt%). Surface properties were examined by scanning electron microscopy (SEM) and profilometry. Cell responses were investigated via dimethylthiazol-diphenyl tetrazolium bromide (MTT) and visualized with fluorescence microscopy. Profilometry revealed significant changes in surface roughness of TiO2 (Ra = 1.79 µm) and Ag-TiO2 layers (Ra = 5.76 µm) compared to the polished (Ra(P) = 0.13 µm) and sandblasted, acid-etched control surfaces (Ra(SA) = 1.26 µm). MTT results demonstrated that the attachment (24 h) of epithelial cells was significantly higher on the Ag-TiO2 coated samples (OD540 = 0.079) than on the polished control surfaces (OD540 = 0.046), whereas MG-63 cells did not show any difference in attachment between the groups. After one week, epithelial cells showed slightly increased survival as compared to MG-63 cells. The results suggest that the tested coatings are cytocompatible with epithelial cells, which means that they are not only antibacterial, but they also appear to be promising candidates for implantological use.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Nanocompuestos , Titanio , Implantes Dentales , Humanos , Microscopía Electrónica de Rastreo , Propiedades de Superficie
16.
J Biomater Appl ; 31(1): 55-67, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26896235

RESUMEN

Antibacterial surfaces have been in the focus of research for years, driven by an unmet clinical need to manage an increasing incidence of implant-associated infections. The use of silver has become a topic of interest because of its proven broad-spectrum antibacterial activity and track record as a coating agent of soft tissue implants and catheters. However, for the time being, the translation of these technological achievements for the improvement of the antibacterial property of hard tissue titanium (Ti) implants remains unsolved. In our study, we focused on the investigation of the photocatalysis mediated antibacterial activity of silver (Ag), and Ti nanoparticles instead of their pharmacological effects. We found that the photosensitisation of commercially pure titanium discs by coating them with an acrylate-based copolymer that embeds coupled Ag/Ti nanoparticles can initiate the photocatalytic decomposition of adsorbed S. salivarius after the irradiation with an ordinary visible light source. The clinical isolate of S. salivarius was characterised with MALDI-TOF mass spectrometer, while the multiplication of the bacteria on the surface of the discs was followed-up by MTT assay. Concerning practical relevance, the infected implant surfaces can be made accessible and irradiated by dental curing units with LED and plasma arc light sources, our research suggests that photocatalytic copolymer coating films may offer a promising solution for the improvement of the antibacterial properties of dental implants.


Asunto(s)
Materiales Biocompatibles Revestidos/administración & dosificación , Implantes Dentales/microbiología , Nanopartículas del Metal/administración & dosificación , Plata/administración & dosificación , Streptococcus salivarius/efectos de los fármacos , Titanio/química , Adsorción , Antibacterianos/administración & dosificación , Antibacterianos/química , Catálisis , Supervivencia Celular/efectos de los fármacos , Materiales Biocompatibles Revestidos/síntesis química , Luz , Ensayo de Materiales , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Polímeros/química , Plata/química , Streptococcus salivarius/crecimiento & desarrollo , Propiedades de Superficie/efectos de la radiación , Titanio/administración & dosificación , Titanio/efectos de la radiación
17.
Langmuir ; 31(6): 2019-27, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25619227

RESUMEN

Aqueous suspensions of spherical ZnMgAl-layered double hydroxides [LDH(sph)] and antibacterial silver nanoparticles (AgNPs) deposited on the lamellae of montmorillonite were used for the synthesis of composites, which behave like coherent gels at low pH (≲4.5) and incoherent sols at higher pH (≳4.5). The composition of the composite was chosen as LDH(sph)/Ag°-montm. = 25:75 wt % in order to ensure a sol-gel transition that can also be characterized by viscometry. This pH-sensitive heterocoagulated system consisting of oppositely charged colloid particles was suitable for the release of antimicrobial AgNPs immobilized on the clay lamellae via a pH-controlled gel-sol transition. The heterocoagulation process was also characterized by surface charge titration measurements. Spherical LDH/Ag°-montmorillonite composite samples were identified by X-ray diffraction (XRD) measurements. The morphological properties of the composites were studied, and the presence of the heterocoagulated structure was confirmed by scanning electron microscopy (SEM). The nanoscale structure of the LDH(sph)-Ag°-montmorillonite composite obtained was also verified by small-angle X-ray scattering (SAXS), and the rheological characteristics were studied at various pH values. The viscosity and yield value of the composite decreased by an order of magnitude upon increasing the pH from 3.0 to 5.5. The sol-gel transition of the composite suspension was reversible in the previously mentioned pH range.


Asunto(s)
Silicatos de Aluminio/química , Bentonita/química , Hidróxidos/química , Nanopartículas del Metal/química , Plata/química , Arcilla , Geles , Concentración de Iones de Hidrógeno , Reología , Propiedades de Superficie , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...