Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 104(14): 8991-9000, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38975867

RESUMEN

BACKGROUND: Discussion of the benefits of moderate alcohol consumption is ongoing. Broadly, research focusing on ethanol consumption tends to report no benefits. However, studies that distinguish between different types of alcoholic beverages, particularly beers, often reveal positive effects. The present study evaluated the genotoxic and mutagenic effects of moderate chronic consumption of India Pale Ale (IPA) craft beer. Sixty-four adult male Swiss mice were used and divided into control and treatment groups receiving water, IPA beer with 55.23 g of ethanol per liter of beer, aqueous solution with 55.23 g of ethanol per liter, and hop infusion ad libitum for 30 days. After this period, the animals were genetically evaluated with a comet assay. For the ex vivo comet assay, blood was collected and exposed to hydrogen peroxide (H2O2). For the in vivo assay, the alkylating agent cyclophosphamide (CP) was administered to the groups after blood collection and sacrificed after 24 h. Brain, liver, and heart tissues were analyzed. Bone marrow was collected and submitted to the micronucleus test. RESULTS: The groups treated with IPA beer, ethanol, and hops did not show genotoxic and mutagenic action in the blood, brain, heart, or liver. The antigenotoxic action of IPA beer and hops was observed in both in vivo and ex vivo models, showing a similar reduction in DNA damage caused by CP. There was no significant difference between the groups with regard to the formation of micronuclei by CP. CONCLUSION: Moderate chronic consumption of IPA beer and hops infusion showed antigenotoxic effects in mice but no antimutagenic action. © 2024 Society of Chemical Industry.


Asunto(s)
Cerveza , Ensayo Cometa , Daño del ADN , Animales , Cerveza/análisis , Ratones , Masculino , Daño del ADN/efectos de los fármacos , India , Hígado/metabolismo , Hígado/efectos de los fármacos , Hígado/química , Humanos , Pruebas de Micronúcleos , Etanol , Antimutagênicos/farmacología
2.
Mutagenesis ; 39(2): 119-140, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38019677

RESUMEN

Pregnancy is a period that is characterized by several metabolic and physiological changes and requires special attention, especially with regard to the relationship between feeding and foetal development. Therefore, the objective of this study was to evaluate whether the practice of voluntary physical exercise (VPE) in combination with chronic consumption of fructose (FRU) from the beginning of life and/or until the gestational period causes genotoxic changes in pregnant females and in their offspring. Seventy Swiss female mice received FRU in the hydration bottle and/or practiced VPE for 8 weeks (prepregnancy/pregnancy). After the lactation period, the offspring groups were separated by sex. It was observed that the consumption of FRU affected the food consumption, serum concentration of FRU, and glycemic profile in the mothers and that the VPE decreases these parameters. In addition, FRU was genotoxic in the mothers' peripheral tissues and VPE had a preventive effect on these parameters. The offspring showed changes in food consumption, serum FRU concentration, and body weight, in addition to an increase in the adiposity index in male offspring in the FRU (FRU) group and a decrease in the FRU + VPE group. FRU leads to hepatic steatosis in the offspring and VPE was able to decrease the area of steatosis. In addition, FRU led to genotoxicity in the offspring and VPE was able to modulate this effect, reducing damages. In conclusion, we observed that all interventions with VPE had nutritional, genetic, and biochemical benefits of the mother and her offspring.


Asunto(s)
Fructosa , Efectos Tardíos de la Exposición Prenatal , Embarazo , Ratones , Masculino , Femenino , Animales , Humanos , Fructosa/efectos adversos , Obesidad , Peso Corporal , Adiposidad , Lactancia , Efectos Tardíos de la Exposición Prenatal/metabolismo
3.
Reprod Toxicol ; 112: 119-135, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868513

RESUMEN

The intrauterine environment is a critical location for exposure to exogenous and endogenous factors that trigger metabolic changes through fetal programming. Among the external factors, chemical compounds stand out, which include caffeine, since its consumption is common among women, including during pregnancy. Thereby, the aim of the present study was to evaluate the behavioral, genetic, and biochemical parameters in the offspring of female mice treated with caffeine during pregnancy and lactation. Swiss female mice (60 days old) received tap water or caffeine at 0.3 or 1.0 mg/mL during copulation (7 days), pregnancy (21 days) and lactation (21 days). After the end of the lactation period, the offspring were divided into groups (water, caffeine 0.3 or 1.0 mg/mL) with 20 animals (10 animals aged 30 days and 10 animals aged 60 days per group per sex). Initially, the offspring were submitted to behavioral tasks and then euthanized for genetic and biochemical analysis in the brain (cortex, striatum, and hippocampus). Behavioral changes in memory, depression, and anxiety were observed in the offspring: 30-day-old female offspring at 1.0 mg /mL dose presented anxiogenic behavior and male offspring the 0.3 mg/mL dose at 30 days of age did not alter long-term memory. Furthermore, an increase in DNA damage and oxidative stress in the brain were observed in the offspring of both sexes. Furthermore, there were changes in Ape-1, BAX, and Bcl-2 in the female offspring hippocampus at 30 days of life. Thus, with this study, we can suggest genotoxicity, oxidative stress, and behavioral changes caused by caffeine during pregnancy and lactation in the offspring that were not treated directly, but received through their mothers; thus, it is important to raise awareness regarding caffeine consumption among pregnant and lactating females.


Asunto(s)
Cafeína , Efectos Tardíos de la Exposición Prenatal , Animales , Encéfalo/metabolismo , Cafeína/toxicidad , Femenino , Humanos , Lactancia , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Agua/metabolismo
4.
J Biomed Mater Res B Appl Biomater ; 110(6): 1234-1244, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34894049

RESUMEN

Inhalation of harmful particles appears as a primary factor for the onset and establishment of chronic obstructive pulmonary disease (COPD). Cigarette smoke acutely promotes an exacerbated inflammatory response with oxidative stress induction with DNA damage. Administration of Gold Nanoparticles (GNPs) with 20 nm in different concentrations can revert damages caused by external aggravations. The effects of GNPs in a COPD process have not been observed until now. The objective of this work was to evaluate the therapeutic effects of intranasal administration of different doses of GNPs after acute exposure to industrial cigarette smoke. Thirty male Swiss mice were randomly divided into five groups: Sham; cigarette smoke (CS); CS + GNPs 2.5 mg/L; CS + GNPs 7.5 mg/L and CS + GNPs 22.5 mg/L. The animals were exposed to the commercial cigarette with filter in an acrylic inhalation chamber and treated with intranasal GNPs for five consecutive days. The results demonstrate that exposure to CS causes an increase in inflammatory cytokines, histological changes, oxidative and nitrosive damage in the lung, as well as increased damage to the DNA of liver cells, blood plasma and lung. Among the three doses of GNPs (2.5, 7.5, and 22.5 mg/L) used, the highest dose had better anti-inflammatory effects. However, GNPs at a dose of 7.5 mg/L showed better efficacies in reducing ROS formation, alveolar diameter, and the number of inflammatory cells in histology, in addition to significantly reduced rate of DNA damage in lung cells without additional systemic genotoxicity already caused by cigarette smoke.


Asunto(s)
Fumar Cigarrillos , Nanopartículas del Metal , Enfermedad Pulmonar Obstructiva Crónica , Administración Intranasal , Animales , Líquido del Lavado Bronquioalveolar , Oro/farmacología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/etiología , Enfermedad Pulmonar Obstructiva Crónica/patología , Nicotiana
5.
J Dev Orig Health Dis ; 13(4): 441-454, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34503598

RESUMEN

Fructose (C6H12O6), also known as levulose, is a hexose. Chronic consumption of fructose may be associated with increased intrahepatic fat concentration and the development of insulin resistance as well as an increase in the prevalence of nonalcoholic fatty liver disease and hyperlipidemia during pregnancy. Despite the existence of many studies regarding the consumption of fructose in pregnancy, its effects on fetuses have not yet been fully elucidated. Therefore, the objective of this study was to evaluate the genetic and biochemical effects in offspring (male and female) of female mice treated with fructose during pregnancy and lactation. Pairs of 60-day-old Swiss mice were used and divided into three groups; negative control and fructose, 10%/l and 20%/l doses of fructose groups. After offspring birth, the animals were divided into six groups: P1 and P2 (males and females), water; P3 and P4 (males and females) fructose 10%/l; and P5 and P6 (males and females) fructose 20%/l. At 30 days of age, the animals were euthanized for genetic and biochemical assessments. Female and male offspring from both dosage groups demonstrated genotoxicity (evaluated through comet assay) and oxidative stress (evaluated through nitrite concentration, sulfhydril content and superoxide dismutase activity) in peripheral and brain tissues. In addition, they showed nutritional and metabolic changes due to the increase in food consumption, hyperglycemia, hyperlipidemia, and metabolic syndrome. Therefore, it is suggested that high consumption of fructose by pregnant female is harmful to their offspring. Thus, it is important to carry out further studies and make pregnant women aware of excessive fructose consumption during this period.


Asunto(s)
Resistencia a la Insulina , Enfermedades Metabólicas , Efectos Tardíos de la Exposición Prenatal , Animales , Lactancia Materna , Femenino , Fructosa/efectos adversos , Humanos , Lactancia , Masculino , Ratones , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo
6.
Drug Chem Toxicol ; 45(2): 515-522, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32063063

RESUMEN

Melanoma, an aggressive skin cancer originating from melanocytes, can metastasize to the lungs, liver, cortex, femur, and spinal cord, ultimately resulting in DNA mutagenic effects. Melatonin is an endogenous hormone and free radical scavenger that possesses the ability to protect the DNA and to exert anti-proliferative effects in melanoma cells. The aim of this study was to evaluate the effects of B16F10 melanoma cells and the effects of melatonin supplementation on genotoxic parameters in murine melanoma models. Thirty-two male C57Bl/6 mice were divided in the following four groups: PBS + vehicle (n = 6), melanoma + vehicle (n = 10), PBS + melatonin (n = 6), and melanoma + melatonin (n = 10). The melanoma groups received a B16F10 cell injection, and melatonin was administered during 60 days. After treatment, tumor sizes were evaluated. DNA damage within the peripheral blood, lungs, liver, cortex, and spinal cord was determined using comet assay, and the mutagenicity within the bone marrow was determined using the micronucleus test. B16F10 cells effectively induced DNA damage in all tissues, and melatonin supplementation decreased DNA damage in the blood, liver, cortex, and spinal cord. This hormone exerts anti-tumor activity via its anti-proliferative, antioxidative, and pro-apoptotic effects. As this result was not observed within the lungs, we hypothesized that melatonin can induce apoptosis in cancer cells, and this was not evaluated by comet assay. This study provides evidence that melatonin can reduce the genotoxicity and mutagenicity caused by B16F10 cells.


Asunto(s)
Antimutagênicos , Melanoma , Melatonina , Animales , Antimutagênicos/farmacología , Ensayo Cometa , Daño del ADN , Suplementos Dietéticos , Masculino , Melatonina/farmacología , Ratones , Ratones Endogámicos C57BL
7.
Br J Nutr ; 126(7): 970-981, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33323139

RESUMEN

Obesity is an epidemic associated with many diseases. The nutraceutical Zingiber officinale (ZO) is a potential treatment for obesity; however, the molecular effects are unknown. Swiss male mice were fed a high-fat diet (59 % energy from fat) for 16 weeks to generate a diet-induced obesity (DIO) model and then divided into the following groups: standard diet + vehicle; standard diet + ZO; DIO + vehicle and DIO + ZO. Those in the ZO groups were supplemented with 400 mg/kg per d of ZO extract (oral administration) for 35 d. The animals were euthanised, and blood, quadriceps, epididymal fat pad and hepatic tissue were collected. DIO induced insulin resistance, proinflammatory cytokines, oxidative stress and DNA damage in different tissues. Treatment with ZO improved insulin sensitivity as well as decreased serum TAG, without changes in body weight or adiposity index. TNF-α and IL-1ß levels were lower in the liver and quadriceps in the DIO + ZO group compared with the DIO group. ZO treatment reduced the reactive species and oxidative damage to proteins, lipids and DNA in blood and liver in obese animals. The endogenous antioxidant activity was higher in the quadriceps of DIO + ZO. These results in the rat model of DIO may indicate ZO as an adjuvant on obesity treatment.


Asunto(s)
Resistencia a la Insulina , Obesidad/tratamiento farmacológico , Extractos Vegetales , Zingiber officinale , Animales , Antioxidantes , Daño del ADN , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Zingiber officinale/química , Masculino , Ratones , Extractos Vegetales/farmacología
8.
Mutagenesis ; 35(6): 465-478, 2020 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-32720686

RESUMEN

The ageing process is a multifactorial phenomenon, associated with decreased physiological and cellular functions and an increased propensity for various degenerative diseases. Studies on melatonin (N-acetyl-5-methoxytryptamine), a potent antioxidant, are gaining attention since melatonin production declines with advancing age. Hence, the aim of this study was to evaluate the effects of chronic melatonin consumption on genotoxic and mutagenic parameters of old Swiss mice. Herein, 3-month-old Swiss albino male mice (n = 240) were divided into eight groups and subdivided into two experiments: first (three groups): natural ageing experiment; second (five groups): animals that started water or melatonin supplementation at different ages (3, 6, 12 and 18 months) until 21 months. After 21 months, the animals from the second experiment were euthanized to perform the comet assay, micronucleus test and western blot analysis. The results demonstrated that melatonin prolonged the life span of the animals. Relative to genomic instability, melatonin was effective in reducing DNA damage caused by ageing, presenting antigenotoxic and antimutagenic activities, independently of initiation age. The group receiving melatonin for 18 months had high levels of APE1 and OGG1 repair enzymes. Conclusively, melatonin presents an efficient antioxidant mechanism aiding modulating genetic and physiological alterations due to ageing.


Asunto(s)
Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Daño del ADN/efectos de los fármacos , Suplementos Dietéticos , Melatonina/administración & dosificación , Animales , Biomarcadores , Ensayo Cometa/métodos , Duración de la Terapia , Inestabilidad Genómica , Ratones , Micronúcleos con Defecto Cromosómico/inducido químicamente , Pruebas de Micronúcleos , Factores de Tiempo
9.
Neural Regen Res ; 15(11): 1981-1985, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32394945

RESUMEN

Cells are constantly subjected to cytotoxic and genotoxic insults resulting in the accumulation of unrepaired damaged DNA, which leads to neuronal death. In this way, DNA damage has been implicated in the pathogenesis of neurological disorders, cancer, and aging. Lifestyle factors, such as physical exercise, are neuroprotective and increase brain function by improving cognition, learning, and memory, in addition to regulating the cellular redox milieu. Several mechanisms are associated with the effects of exercise in the brain, such as reduced production of oxidants, up-regulation of antioxidant capacity, and a consequent decrease in nuclear DNA damage. Furthermore, physical exercise is a potential strategy for further DNA damage repair. However, the neuroplasticity molecules that respond to different aspects of physical exercise remain unknown. In this review, we discuss the influence of exercise on DNA damage and adjacent mechanisms in the brain. We discuss the results of several studies that focus on the effects of physical exercise on brain DNA damage.

10.
Mutagenesis ; 35(2): 179-187, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-31967303

RESUMEN

The consumption of fructose during pregnancy can cause hyperglycaemia and may stimulate production of reactive oxygen species; however, there are only a few studies reporting whether fructose consumption during pregnancy causes DNA damage. Therefore, the aim of this study was to evaluate the effects of fructose consumption on genetic and biochemical parameters in Swiss mice treated during pregnancy and lactation. For this, 15 couples of 60-day-old Swiss mice were divided into three groups of five couples: negative control (water) and two fructose groups (fructose dose of 10%/l and 20%/l). During this period, we evaluated food consumption, energy efficiency and body weight. Samples of blood were collected from the females before copulation, after the 15th day of conception and on the 21st day after the lactation period, for the glycaemic and lipid profiles as well as comet assay and micronucleus (MN) test. Comet assay and MN test evaluate DNA damage and clastogenicity, respectively. In the gestation and lactation period, the two fructose doses tested showed DNA damage as observed in the comet assay, which is associated with an increase in dietary intake, body weight, lipid profile and fasting glycaemia in females. Thus, it can be suggested that the high consumption of fructose during these periods is harmful for pregnancy and lactation.


Asunto(s)
Daño del ADN/efectos de los fármacos , Fructosa/efectos adversos , Hiperglucemia/genética , Complicaciones del Embarazo/genética , Animales , Daño del ADN/genética , Modelos Animales de Enfermedad , Femenino , Fructosa/farmacología , Humanos , Hiperglucemia/inducido químicamente , Hiperglucemia/metabolismo , Hiperglucemia/patología , Lactancia/efectos de los fármacos , Ratones , Pruebas de Micronúcleos , Embarazo , Complicaciones del Embarazo/inducido químicamente , Complicaciones del Embarazo/metabolismo , Complicaciones del Embarazo/patología , Especies Reactivas de Oxígeno/metabolismo
11.
Int J Cancer ; 146(10): 2797-2809, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31456221

RESUMEN

Antineoplastic therapy has been associated with pain syndrome development characterized by acute and chronic pain. The chemotherapeutic agent dacarbazine, used mainly to treat metastatic melanoma, is reported to cause painful symptoms, compromising patient quality of life. Evidence has proposed that transient receptor potential ankyrin 1 (TRPA1) plays a critical role in chemotherapy-induced pain syndrome. Here, we investigated whether dacarbazine causes painful hypersensitivity in naive or melanoma-bearing mice and the involvement of TRPA1 in these models. Mouse dorsal root ganglion (DRG) neurons and human TRPA1-transfected HEK293 (hTRPA1-HEK293) cells were used to evaluate the TRPA1-mediated calcium response evoked by dacarbazine. Mechanical and cold allodynia were evaluated after acute or repeated dacarbazine administration in naive mice or after inoculation of B16-F10 melanoma cells in C57BL/6 mice. TRPA1 involvement was investigated by using pharmacological and genetic tools (selective antagonist or antisense oligonucleotide treatment and Trpa1 knockout mice). Dacarbazine directly activated TRPA1 in hTRPA1-HEK293 cells and mouse DRG neurons and appears to sensitize TRPA1 indirectly by generating oxidative stress products. Moreover, dacarbazine caused mechanical and cold allodynia in naive but not Trpa1 knockout mice. Also, dacarbazine-induced nociception was reduced by the pharmacological TRPA1 blockade (antagonism), antioxidants, and by ablation of TRPA1 expression. TRPA1 pharmacological blockade also reduced dacarbazine-induced nociception in a tumor-associated pain model. Thus, dacarbazine causes nociception by TRPA1 activation, indicating that this receptor may represent a pharmacological target for treating chemotherapy-induced pain syndrome in cancer patients submitted to antineoplastic treatment with dacarbazine.


Asunto(s)
Antineoplásicos Alquilantes/toxicidad , Dacarbazina/toxicidad , Hiperalgesia/inducido químicamente , Melanoma Experimental , Canal Catiónico TRPA1/efectos de los fármacos , Animales , Células HEK293 , Humanos , Hiperalgesia/metabolismo , Ratones , Ratones Endogámicos C57BL , Canal Catiónico TRPA1/metabolismo
12.
J Environ Sci Health B ; 54(10): 866-874, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31258003

RESUMEN

Mikania glomerata Sprengel, popularly known as "guaco," is used in Brazilian folk medicine for several inflammatory and allergic conditions. Besides, the popular use "guaco" is indicated by the Brazilian Ministry of Health as a safe and effective herbal medicine. The biological activity of M. glomerata extracts is due to the presence of the coumarins, a large family of phenolic substances found in plants and is made of fused benzene and α-pyrone rings. Considering that there are few data on the biological effects of the extracts of M. glomerata, mainly in genetic level, this work aims to evaluate, in vitro, the genotoxicity and coumarin production in M. glomerata in conventional and organic growing. The data showed that the organic culture system showed double the concentration of coumarin being significantly more productive than the conventional system. Besides, the results of comet assay suggest that extracts of M. glomerata cultivated in a conventional system was genotoxic, increased DNA damage levels while the organic extracts seem to have antigenotoxic effect possibly due to the concentration of coumarins. Additional biochemical investigations are necessary to elucidate the mechanisms of action of M. glomerata extracts, which were found to have a role in protection against DNA damage.


Asunto(s)
Agricultura/métodos , Cumarinas/metabolismo , Mikania/metabolismo , Extractos Vegetales/toxicidad , Plantas Medicinales/metabolismo , Células Sanguíneas/citología , Células Sanguíneas/efectos de los fármacos , Brasil , Supervivencia Celular/efectos de los fármacos , Cumarinas/toxicidad , Daño del ADN/efectos de los fármacos , Humanos , Mikania/química , Pruebas de Mutagenicidad , Agricultura Orgánica/métodos , Extractos Vegetales/análisis , Extractos Vegetales/química
13.
Inflammopharmacology ; 27(4): 829-844, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31098702

RESUMEN

Copaifera officinalis L. possesses traditional uses as an analgesic, anti-inflammatory, and antiseptic. However, until now the antinociceptive effect and the mechanism of action were not described for Copaifera officinalis L. oil and no compound present in this oil was identified to be responsible for its biological effects. The goal of this study was to identify the presence of kaurenoic acid in Copaifera officinalis oil and investigate its antinociceptive effect, mechanism of action, and possible adverse effects in mice. The quantification of kaurenoic acid in Copaifera officinalis oil was done by HPLC-DAD technique. Male and female albino Swiss mice (25-35 g) were used to test the antinociceptive effect of Copaifera officinalis (10 mg/kg, intragastric) or kaurenoic acid (1 mg/kg) in the tail-flick test, intraplantar injection of capsaicin, allyl isothiocyanate (AITC) or complete Freund's adjuvant (CFA). Copaifera officinalis oil and kaurenoic acid caused the antinociceptive effect in the tail-flick test in a dose-dependent manner, and their effect was reversed by naloxone (an opioid antagonist). Copaifera officinalis oil or kaurenoic acid reduced the nociception caused by capsaicin or AITC and produced an anti-allodynic effect in the CFA model (after acute or repeated administration for 7 days). Possible adverse effects were also observed, and non-detectable adverse effect was observed for the intragastric administration of Copaiba officinalis oil or kaurenoic acid and in the same way, the treatments were neither genotoxic nor mutagenic at the doses tested. Thus, Copaiba officinalis oil, and kaurenoic acid possess antinociceptive action without adverse effects.


Asunto(s)
Analgésicos/farmacología , Diterpenos/farmacología , Fabaceae/química , Nocicepción/efectos de los fármacos , Aceites Volátiles/farmacología , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/farmacología , Capsaicina/farmacología , Femenino , Adyuvante de Freund/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Masculino , Ratones , Dimensión del Dolor/métodos
14.
Arch Environ Occup Health ; 74(6): 358-363, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30896319

RESUMEN

The aim of the present study was to evaluate the genotoxic effect of lettuce (Lactuca sativa L.), beet (Beta vulgaris L.), broccoli (Brassica oleracea var. italica), and kale (Brassica oleracea var. acephala) grown in vegetable garden built on the deposits of coal tailings. For this, we used 72 healthy male Swiss albino mice that received juice from the vegetables in an acute or chronic treatment. Using comet assay, we determined that acute administration of the juices of all vegetables from the coal-mining area was genotoxic, and increased the DNA damage in the blood, liver, and cerebral cortex of mice. Therefore, the present data suggest that intake of vegetables cultivated over coal waste results in an increase in DNA damage in some organs; this situation may pose a risk to health.


Asunto(s)
Carbón Mineral/toxicidad , Daño del ADN/genética , Verduras/genética , Animales , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Masculino , Ratones , Pruebas de Mutagenicidad , Mutágenos/toxicidad
15.
Mutagenesis ; 34(2): 135-145, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-30726950

RESUMEN

Type 2 diabetes mellitus has undergone a worldwide growth in incidence in the world and has now acquired epidemic status. There is a strong link between type 2 diabetes and vitamin D deficiency. Because vitamin D has beneficial effects on glucose homeostasis, the aim of this study was to evaluate the influence of vitamin D3 supplementation on the modulation of glycaemic control and other metabolic effects, as well as modulation of genomic instability in patients with type 2 diabetes. We evaluated 75 patients with type 2 diabetes, registered in the Integrated Clinics of the University of Southern Santa Catarina. Participants received 4000 IU of vitamin D3 (25(OH)D) supplementation daily for 8 weeks. Blood samples were collected at the beginning and at the end of the supplementation, and 4 weeks after the end of supplementation. The glycidic and lipid profiles [total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein and triglycerides], oxidative stress, DNA damage and 25(OH)D levels were evaluated. Vitamin D3 supplementation for 8 weeks showed enough to significantly increase blood levels of 25(OH)D. A significant difference in lipid profile was observed only in non-HDL cholesterol. Significant changes were observed in glucose homeostasis (fasting glucose and serum insulin) and, in addition, a reduction in the parameters of oxidative stress and DNA damage. There was a significant reduction in the values of 25(OH)D 4 weeks after the end of the supplementation, but levels still remained above baseline. Use of vitamin D supplementation can be an ally in the health modulation of patients with type 2 diabetes mellitus.


Asunto(s)
Colecalciferol/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Anciano , Glucemia/efectos de los fármacos , Colecalciferol/sangre , Colesterol/sangre , Daño del ADN/efectos de los fármacos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/enzimología , Suplementos Dietéticos , Femenino , Inestabilidad Genómica , Glutatión/metabolismo , Humanos , Hipoglucemiantes/sangre , Hígado/enzimología , Masculino , Malondialdehído/metabolismo , Persona de Mediana Edad , Óxido Nítrico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Triglicéridos/sangre
16.
Neurochem Res ; 44(4): 787-795, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30610653

RESUMEN

Caffeine is a bioactive compound worldwide consumed with effect into the brain. Part of its action in reducing incidence or delaying Alzheimer's and Parkinson's diseases symptoms in human is credited to the adenosine receptors properties. However, the impact of caffeine consumption during aging on survival of brain cells remains debatable. This work, we investigated the effect of low-dose of caffeine on the ectonucleotidase activities, adenosine receptors content, and paying particular attention to its pro-survival effect during aging. Male young adult and aged Swiss mice drank water or caffeine (0.3 g/L) ad libitum for 4 weeks. The results showed that long-term caffeine treatment did not unchanged ATP, ADP or AMP hydrolysis in hippocampus when compared to the mice drank water. Nevertheless, the ATP/ADP hydrolysis ratio was higher in young adult (3:1) compared to the aged (1:1) animals regardless of treatment. The content of A1 receptors did not change in any groups of mice, but the content of A2A receptors was reduced in hippocampus of mice that consumed caffeine. Moreover, the cell viability results indicated that aged mice not only had increased pyknotic neurons in the hippocampus but also had reduced damage after caffeine treatment. Overall, these findings indicate a potential neuroprotective effect of caffeine during aging through the adenosinergic system.


Asunto(s)
Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Cafeína/administración & dosificación , Neuroprotección/efectos de los fármacos , Receptor de Adenosina A2A/metabolismo , Antagonistas del Receptor de Adenosina A2/administración & dosificación , Envejecimiento/patología , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Neuroprotección/fisiología
17.
Int Immunopharmacol ; 67: 483-486, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30599400

RESUMEN

The aim of this study was to evaluate the DNA damage in peripheral lymphocytes and the frequencies of CD8+ T cells expressing CD25, CD28 and CD45ro in aged individuals with inverted CD4:CD8 ratio. Blood samples of elderly individuals (aged >65) with normal CD4:CD8 ratio (n = 8) and inverted CD4:CD8 ratio (n = 8) were collected to identify the expression of CD25+, CD28+ and CD45ro+ in CD8+ T cells. DNA damage index was evaluated by the alkaline comet assay which was performed in lymphocytes treated with different concentrations of methyl methanesulfonate (MMS) (control non-treatment, 2 × 10-5 M, 4 × 10-5 M) for 1, 2 or 24 h. Elderly individuals with inverted CD4:CD8 ratio presented low frequency of CD8+ CD28+. Moreover, low DNA damage was observed in lymphocytes of elderly with inverted CD4:CD8 ratio in different doses of MMS. Aged individuals with inverted CD4:CD8 ratio presented lower DNA damage events in peripheral lymphocytes, suggesting a resistance for cell death in T cells of individuals with immune risk profile.


Asunto(s)
Linfocitos/fisiología , Anciano , Relación CD4-CD8 , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
Exp Gerontol ; 113: 209-217, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30304709

RESUMEN

Aging is a complex biological process. Epigenetic alterations have been related to both aging and memory decline. Included amongst these alterations is histone acetylation, which may play a crucial role in aging. Thus, the aims of the present study were to standardize the animal model of d-galactose (d-gal), and to evaluate the effects caused by sodium butyrate (SB), which is a histone deacetylase inhibitor on memory, the modulation of histone deacetylases (HDACs), and also DNA damage in 2, 6 or 16-month-old Wistar rats which were subjected to administrations of d-gal. To help choose the best dose of d-gal for the induction of the aging model, we performed a dose-response curve (100, 200 or 300 mg/kg). d-Gal was administered orally to the 2-month-old rats for a period of 30 days. After this, d-gal (200 mg/kg) or water were administered to the 2, 6 or 16-month-old rats for a period of 30 days. On the 24th day, treatment was started with SB (600 mg/kg) intraperitoneally, for a period of 7 days. SB was able to reverse the damage to habituation memory caused by d-gal in the 2 and 6-month-old rats, but was unable to reverse the damage in the 16 month-old animals. In addition, SB was able to reverse the damage caused by natural aging in the 16-month-old animals. In the inhibitory avoidance task, SB improved the damage caused by d-gal in the 2, 6 and 16-month-old animals and had the same result against the effects of natural aging in the 16-month-old rats. Moreover, d-gal caused an increase in the level of HDACs activity in the 16-month-old animals, and SB was able to reverse this effect in the frontal cortex and hippocampus. The 16-month-old animals showed an increase in the frequency of DNA damage in peripheral blood, and SB was able to reduce this damage. Moreover, d-gal caused an increase in the index and frequency of DNA damage in the 2 and 6-month-old animals, and treatment with SB was able to prevent this damage. Thus, the present study showed the protective effects of SB on the memory of naturally aged and d-gal induced aging in rats. Therefore, the present study shows new findings for the use of SB in aging.


Asunto(s)
Envejecimiento/efectos de los fármacos , Ácido Butírico/farmacología , Galactosa/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Memoria/efectos de los fármacos , Animales , Encéfalo/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas , Ratas Wistar
19.
Toxicon ; 140: 132-138, 2017 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-29107080

RESUMEN

Tityus serrulatus is the scorpion associated with the most severe cases of scorpion envenoming in Brazil. However, there are no studies reporting the genotoxic effects of this venom in natural or experimental envenomations. It is well known that DNA-damage responses are providing opportunities for improving disease detection and management. In this study was evaluating the genotoxicity of the T. serrulatus venom in different organs (hippocampus, cortex, striatum, blood, heart, lung, liver and kidney) and periods in mice experimentally envenomed. ELISA and the Comet assays were used to quantification of venoms antigens and DNA damage, respectively. Forty-eight Swiss mice were divided into five groups and 0.5 DL50 of T. serrulatus venom (0.90 mg/kg) was administered intraperitoneally in each animal. Euthanasia was performed by cervical dislocation in the period of 0h (control group) 1h, 2h, 6h and 12h, where it the tissues were removed. The results showed high DNA damage in all structures analyzed, suggesting that T. serrulatus venom presented genotoxic activity or some secondary effect generated by venom injection. In the ELISA test, toxic circulant antigens were verified in practically all organs at the time intervals analyzed. Therefore, the distribution of the venom changes from organ to organ. We conclude that scorpion envenoming affects DNA in all organs analyzed even when the venom concentration is lower or no detectable, DNA damage persists.


Asunto(s)
Daño del ADN/efectos de los fármacos , Venenos de Escorpión/inmunología , Venenos de Escorpión/toxicidad , Animales , Antígenos/análisis , Ensayo Cometa , Ensayo de Inmunoadsorción Enzimática , Masculino , Ratones , Escorpiones , Distribución Tisular
20.
Mol Neurobiol ; 54(10): 7928-7937, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-27878552

RESUMEN

Aging is associated with impaired cognition and memory and increased susceptibility to neurodegenerative disorders. Physical exercise is neuroprotective; however, the major evidence of this effect involves studies of only aerobic training in young animals. The benefits of other exercise protocols such as strength training in aged animals remains unknown. Here, we investigated the effect of aerobic and strength training on spatial memory and hippocampal plasticity in aging rats. Aging Wistar rats performed aerobic or strength training for 50 min 3 to 4 days/week for 8 weeks. Spatial memory and neurotrophic and glutamatergic signaling in the hippocampus of aged rats were evaluated after aerobic or strength training. Both aerobic and strength training improved cognition during the performance of a spatial memory task. Remarkably, the improvement in spatial memory was accompanied by an increase in synaptic plasticity proteins within the hippocampus after exercise training, with some differences in the intracellular functions of those proteins between the two exercise protocols. Moreover, neurotrophic signaling (CREB, BDNF, and the P75NTR receptor) increased after training for both exercise protocols, and aerobic exercise specifically increased glutamatergic proteins (NMDA receptor and PSD-95). We also observed a decrease in DNA damage after aerobic training. In contrast, strength training increased levels of PKCα and the proinflammatory factors TNF-α and IL-1ß. Overall, our results show that both aerobic and strength training improved spatial memory in aging rats through inducing distinct molecular mechanisms of neuroplasticity. Our findings extend the idea that exercise protocols can be used to improve cognition during aging.


Asunto(s)
Envejecimiento , Cognición/fisiología , Plasticidad Neuronal/fisiología , Condicionamiento Físico Animal , Memoria Espacial/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/metabolismo , Masculino , Condicionamiento Físico Animal/métodos , Ratas Wistar , Entrenamiento de Fuerza/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA