Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2403413, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934357

RESUMEN

Tin-halide perovskites (THP) are emerging materials for photovoltaics with optoelectronic properties potentially rivaling lead-based analoges. Their efficiencies in solar cells are, however, severely limited by the high sensitivity of tin to oxygen and the heavy p-doping natively present in the material. While the effects of oxygen can be mitigated by using reducing agents upon the synthesis and by encapsulating the device, the native p-doping caused by the high density of acceptor defects remains a challenge to be further addressed for prolonging carrier lifetimes and, consequently, device efficiency. In this work, potential compositional engineering strategies aimed at reducing the p-doping of this class of materials and increasing their efficiency in solar cells are investigated. Based on density functional theory simulations it is demonstrated that THP doping with d1s2 trivalent ions effectively decreases the hole background density and the density of the deep defects responsible for the non-radiative recombination in these materials. This effect is enhanced by alloying iodide with small fractions of bromide, up to 33%. Higher bromide fractions, instead, are detrimental due to the increased non-radiative recombination. These results may provide useful guidelines to experimentalists for improving the optoelectronic quality of THPs and consequently of the ensuing devices.

2.
Phys Rev Lett ; 132(12): 126501, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579228

RESUMEN

Two-dimensional moiré materials have emerged as the most versatile platform for realizing quantum phases of electrons. Here, we explore the stability origins of correlated states in WSe_{2}/WS_{2} moiré superlattices. We find that ultrafast electronic excitation leads to partial melting of the Mott states on timescales 5 times longer than predictions from the charge hopping integrals and that the melting rates are thermally activated, with activation energies of 18±3 and 13±2 meV for the one- and two-hole Mott states, respectively, suggesting significant electron-phonon coupling. A density functional theory calculation of the one-hole Mott state confirms polaron formation and yields a hole-polaron binding energy of 16 meV. These findings reveal a close interplay of electron-electron and electron-phonon interactions in stabilizing the polaronic Mott insulators at transition metal dichalcogenide moiré interfaces.

3.
J Chem Theory Comput ; 20(5): 1923-1931, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38324509

RESUMEN

We present a general framework that enables quantification with atomic resolution of the overall London dispersion energy, which can be readily integrated with currently available energy decomposition schemes. This approach can be used to determine the contribution of individual atoms and functional groups to molecular recognition, conformational preferences, molecular stability, and reactivity. Its efficacy across diverse realms of molecular chemistry and biology is demonstrated with application to molecular balances in solution, asymmetric organocatalytic transformations, and a subcomplex of the F1FO ATP synthase.

4.
Nat Energy ; 9(2): 172-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419691

RESUMEN

The stabilization of grain boundaries and surfaces of the perovskite layer is critical to extend the durability of perovskite solar cells. Here we introduced a sulfonium-based molecule, dimethylphenethylsulfonium iodide (DMPESI), for the post-deposition treatment of formamidinium lead iodide perovskite films. The treated films show improved stability upon light soaking and remains in the black α phase after two years ageing under ambient condition without encapsulation. The DMPESI-treated perovskite solar cells show less than 1% performance loss after more than 4,500 h at maximum power point tracking, yielding a theoretical T80 of over nine years under continuous 1-sun illumination. The solar cells also display less than 5% power conversion efficiency drops under various ageing conditions, including 100 thermal cycles between 25 °C and 85 °C and an 1,050-h damp heat test.

5.
Energy Environ Sci ; 17(4): 1549-1558, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38384422

RESUMEN

Chemical environment and precursor-coordinating molecular interactions within a perovskite precursor solution can lead to important implications in structural defects and crystallization kinetics of a perovskite film. Thus, the opto-electronic quality of such films can be boosted by carefully fine-tuning the coordination chemistry of perovskite precursors via controllable introduction of additives, capable of forming intermediate complexes. In this work, we employed a new type of ligand, namely 1-phenylguanidine (PGua), which coordinates strongly with the PbI2 complexes in the perovskite precursor, forming new intermediate species. These strong interactions effectively retard the perovskite crystallization process and form homogeneous films with enlarged grain sizes and reduced density of defects. In combination with an interfacial treatment, the resulted champion devices exhibit a 24.6% efficiency with outstanding operational stability. Unprecedently, PGua can be applied in various PSCs with different perovskite compositions and even in both configurations: n-i-p and p-i-n, highlighting the universality of this ligand.

6.
Chem Sci ; 15(4): 1348-1363, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38274069

RESUMEN

Despite substantial advancements in the field of the electrocatalytic oxygen evolution reaction (OER), the efficiency of earth-abundant electrocatalysts remains far from ideal. The difficulty stems from the complex nature of the catalytic system, which limits our fundamental understanding of the process and thus the possibility of a rational improvement of performance. Herein, we shed light on the role played by the tunable 3d configuration of the metal centers in determining the OER catalytic activity by combining electrochemical and spectroscopic measurements with an experimentally validated computational protocol. One-dimensional coordination polymers based on Fe, Co and Ni held together by an oxonato linker were selected as a case study because of their well-defined electronic and geometric structure in the active site, which can be straightforwardly correlated with their catalytic activity. Novel heterobimetallic coordination polymers were also considered, in order to shed light on the cooperativity effects of different metals. Our results demonstrate the fundamental importance of electronic structure effects such as metal spin and oxidation state evolutions along the reaction profile to modulate ligand binding energies and increase catalyst efficiency. We demonstrated that these effects could in principle be exploited to reduce the overpotential of the electrocatalytic OER below its theoretical limit, and we provide basic principles for the development of coordination polymers with a tailored electronic structure and activity.

7.
Angew Chem Int Ed Engl ; 63(10): e202318557, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38189576

RESUMEN

Chiral perovskites possess a huge applicative potential in several areas of optoelectronics and spintronics. The development of novel lead-free perovskites with tunable properties is a key topic of current research. Herein, we report a novel lead-free chiral perovskite, namely (R/S-)ClMBA2 SnI4 (ClMBA=1-(4-chlorophenyl)ethanamine) and the corresponding racemic system. ClMBA2 SnI4 samples exhibit a low band gap (2.12 eV) together with broad emission extending in the red region of the spectrum (∼1.7 eV). Chirality transfer from the organic ligand induces chiroptical activity in the 465-530 nm range. Density functional theory calculations show a Rashba type band splitting for the chiral samples and no band splitting for the racemic isomer. Self-trapped exciton formation is at the origin of the large Stokes shift in the emission. Careful correlation with analogous lead and lead-free 2D chiral perovskites confirms the role of the symmetry-breaking distortions in the inorganic layers associated with the ligands as the source of the observed chiroptical properties providing also preliminary structure-property correlation in 2D chiral perovskites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA