Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 34(36)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37267925

RESUMEN

As an additive manufacturing process, material jetting techniques allow to selectively deposit droplets of materials in liquid or powder form through a small-diameter aperture, such as a nozzle of a print head. For the fabrication of printed electronics, a variety of inks and dispersions of functional materials can be deposited by drop-on-demand printing on rigid and flexible substrates. In this work, zero-dimensional multi-layer shell-structured fullerene material, also known as carbon nano-onion (CNO) or onion-like carbon, is printed on polyethylene terephthalate substrates using drop-on-demand inkjet printing. CNOs are produced using a low-cost flame synthesis technique and characterized by electron microscopy, Raman, x-ray photoelectron spectroscopy, and specific surface area and pore size measurements. The produced CNO material has an average diameter of ∼33 nm, pore diameter in the range ∼2-40 nm and a specific surface area of 160 m2.g-1. The CNO dispersions in ethanol have a reduced viscosity (∼1.2 mPa.s) and are compatible with commercial piezoelectric inkjet heads. The jetting parameters are optimized to avoid satellite drops and to obtain a reduced drop volume (52 pL), resulting in optimal resolution (220µm) and line continuity. A multi-step process is implemented without inter-layer curing and a fine control over the CNO layer thickness is achieved (∼180 nm thick layer after 10 printing passes). The printed CNO structures show an electrical resistivity of ∼600 Ω.m, a high negative temperature coefficient of resistance (-4.35 × 10-2°C-1) and a marked dependency on relative humidity (-1.29 × 10-2RH%-1). The high sensitivity to temperature and humidity, combined to the large specific area of the CNOs, make this material and the corresponding ink a viable prospect for inkjet-printed technologies, such as environmental and gas sensors.


Asunto(s)
Carbono , Fulerenos , Cebollas , Electrónica , Tereftalatos Polietilenos
2.
Front Chem ; 10: 878799, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35480388

RESUMEN

The liquid phase exfoliation (LPE) of graphite has allowed to produce graphene materials on a large scale and at a reasonable cost. By this method, stable dispersions, inks and liquid suspensions containing atomic-thick graphene flakes with tailored concentrations can be produced, opening up applications in a wide range of cutting-edge technologies such as functional coatings, printed and flexible electronics, and composites. However, currently established LPE techniques raise several health and environmental risks, since unsafe and toxic solvents (such as NMP, DMF, and DMSO) are often regarded as the most effective liquid media for the process. Therefore, it appears necessary to unlock eco-friendly and sustainable methods for the production of graphene at an industrial scale. This review focuses on the latest developments in terms of green solvents for LPE production of graphene. We highlight the use of a new green solvent, Cyrene, and its performance when compared to conventional solvents.

3.
Sensors (Basel) ; 21(16)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34450718

RESUMEN

In this work, new highly sensitive graphene-based flexible strain sensors are produced. In particular, polyvinylidene fluoride (PVDF) nanocomposite films filled with different amounts of graphene nanoplatelets (GNPs) are produced and their application as wearable sensors for strain and movement detection is assessed. The produced nanocomposite films are morphologically characterized and their waterproofness, electrical and mechanical properties are measured. Furthermore, their electromechanical features are investigated, under both stationary and dynamic conditions. In particular, the strain sensors show a consistent and reproducible response to the applied deformation and a Gauge factor around 30 is measured for the 1% wt loaded PVDF/GNP nanocomposite film when a deformation of 1.5% is applied. The produced specimens are then integrated in commercial gloves, in order to realize sensorized gloves able to detect even small proximal interphalangeal joint movements of the index finger.


Asunto(s)
Grafito , Nanocompuestos , Dispositivos Electrónicos Vestibles , Polivinilos
4.
Nanomaterials (Basel) ; 10(2)2020 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-32079073

RESUMEN

The colonization of microorganisms and their subsequent interaction with stone substrates under different environmental conditions encourage deterioration of materials by multiple mechanisms resulting in changes in the original color, appearance and durability. One of the emerging alternatives to remedy biodeterioration is nanotechnology, thanks to nanoparticle properties such as small size, no-toxicity, high photo-reactivity, and low impact on the environment. This study highlighted the effects of ZnO-based nanomaterials of two bacteria genera isolated from the Temple of Concordia (Agrigento's Valley of the Temples in Sicily, Italy) that are involved in biodeterioration processes. The antimicrobial activities of ZnO-nanorods (Zn-NRs) and graphene nanoplatelets decorated with Zn-NRs (ZNGs) were evaluated against the Gram positive Arthrobacter aurescens and two isolates of the Gram negative Achromobacter spanius. ZNGs demonstrated high antibacterial and antibiofilm activities on several substrates such as stones with different porosity. In the case of ZNGs, a marked time- and dose-dependent bactericidal effect was highlighted against all bacterial species. Therefore, these nanomaterials represent a promising tool for developing biocompatible materials that can be exploited for the conservation of cultural heritage. These nanostructures can be successfully applied without releasing toxic compounds, thus spreading their usability.

5.
Sci Rep ; 9(1): 15719, 2019 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673020

RESUMEN

Lightweight multifunctional electromagnetic (EM) absorbing materials with outstanding thermal properties, chemical resistance and mechanical stability are crucial for space, aerospace and electronic devices and packaging. Therefore, 3D porous graphene aerogels are attracting ever growing interest. In this paper we present a cost effective lightweight 3D porous graphene-based aerogel for EM wave absorption, constituted by a poly vinylidene fluoride (PVDF) polymer matrix filled with graphene nanoplatelets (GNPs) and we show that the thermal, electrical, mechanical properties of the aerogel can be tuned through the proper selection of the processing temperature, controlled either at 65 °C or 85 °C. The produced GNP-filled aerogels are characterized by exceptional EM properties, allowing the production of absorbers with 9.2 GHz and 6.4 GHz qualified bandwidths with reflection coefficients below -10 dB and -20 dB, respectively. Moreover, such aerogels show exceptional thermal conductivities without any appreciable volume change after temperature variations. Finally, depending on the process parameters, it is shown the possibility to obtain water repellent aerogel composites, thus preventing their EM and thermal properties from being affected by environmental humidity and allowing the realization of EM absorber with a stable response.

6.
Polymers (Basel) ; 11(7)2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-31261759

RESUMEN

In the present work, poly(vinylidene fluoride) (PVDF) films were produced by spin-coating, and applying different conditions of quenching, in order to investigate the dominant mechanism of the ß-phase formation. The influence of the polymer/solvent mass ratio of the solution, the rotational speed of the spin-coater and the crystallization temperature of the film on both the ß-phase content and the piezoelectric coefficient (d33) were investigated. This study demonstrates that the highest values of d33 are obtained when thinner films, produced with a lower concentration of polymer in the solvent (i.e., 20 wt.%), go through quenching in water, at room temperature. Whereas, in the case of higher polymer concentration (i.e., 30 wt.%), the best value of d33 (~30 pm/V) was obtained through quenching in liquid nitrogen, at the temperature of 77 K. We believe that in the former case, phase inversion is mainly originated by electrostatic interaction of PVDF with the polar molecules of water, due to the low viscosity of the polymer solution. On the contrary, in the latter case, due to higher viscosity of the solution, mechanical stretching induced on the polymer during spin-coating deposition is the main factor inducing self-alignment of the ß-phase. These findings open up a new way to realize highly efficient devices for energy harvesting and wearable sensors.

7.
Nanomaterials (Basel) ; 8(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235819

RESUMEN

Novel polymer-based piezoelectric nanocomposites with enhanced electromechanical properties open new opportunities for the development of wearable energy harvesters and sensors. This paper investigates how the dissolution of different types of hexahydrate metal salts affects ß-phase content and piezoelectric response (d33) at nano- and macroscales of polyvinylidene fluoride (PVDF) nanocomposite films. The strongest enhancement of the piezoresponse is observed in PVDF nanocomposites processed with Mg(NO3)2⋅6H2O. The increased piezoresponse is attributed to the synergistic effect of the dipole moment associated with the nucleation of the electroactive phase and with the electrostatic interaction between the CF2 group of PVDF and the dissolved salt through hydrogen bonding. The combination of nanofillers like graphene nanoplatelets or zinc oxide nanorods with the hexahydrate salt dissolution in PVDF results in a dramatic reduction of d33, because the nanofiller assumes a competitive role with respect to H-bond formation between PVDF and the dissolved metal salt. The measured peak value of d33 reaches the local value of 13.49 pm/V, with an average of 8.88 pm/V over an area of 1 cm². The proposed selection of metal salt enables low-cost production of piezoelectric PVDF nanocomposite films, without electrical poling or mechanical stretching, offering new opportunities for the development of devices for energy harvesting and wearable sensors.

8.
Polymers (Basel) ; 10(1)2018 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30966116

RESUMEN

Recently, graphene-polymer composites gained a central role in advanced stress and strain sensing. A fundamental step in the production of epoxy-composites filled with graphene nanoplatelets (GNPs) consists in the exfoliation and dispersion of expanded graphite in a proper solvent, in the mixing of the resulting GNP suspension with the polymer matrix, and in the final removal of the solvent from the composite before curing through evaporation. The effects of traces of residual solvent on polymer curing process are usually overlooked, even if it has been found that even a small amount of residual solvent can affect the mechanical properties of the final composite. In this paper, we show that residual traces of N,N'-Dimethylformamide (DMF) in vinylester epoxy composites can induce relevant variations of the electrical, mechanical and electromechanical properties of the cured GNP-composite. To this purpose, a complete analysis of the morphological and structural characteristics of the composite samples produced using different solvent mixtures (combining acetone and DMF) is performed. Moreover, electrical, mechanical and electromechanical properties of the produced composites are assessed. In particular, the effect on the piezoresistive response of the use of DMF in the solvent mixture is analyzed using an experimental strain dependent percolation law to fit the measured electromechanical data. It is shown that the composites realized using a higher amount of DMF are characterized by a higher electrical conductivity and by a strong reduction of Young's Modulus.

9.
J Nanobiotechnology ; 15(1): 89, 2017 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-29233187

RESUMEN

BACKGROUND: Secondary caries are considered the main cause of dental restoration failure. In this context, anti-biofilm and bactericidal properties are desired in dental materials against pathogens such as Streptococcus mutans. To this purpose, graphene based materials can be used as fillers of polymer dental adhesives. In this work, we investigated the possibility to use as filler of dental adhesives, graphene nanoplatelets (GNP), a non toxic hydrophobic nanomaterial with antimicrobial and anti-biofilm properties. RESULTS: Graphene nanoplatelets have been produced starting from graphite intercalated compounds through a process consisting of thermal expansion and liquid exfoliation. Then, a dental adhesive filled with GNPs at different volume fractions has been produced through a solvent evaporation method. The rheological properties of the new experimental adhesives have been assessed experimentally. The adhesive properties have been tested using microtensile bond strength measurements (µ-TBS). Biocidal activity has been studied using the colony forming units count (CFU) method. The anti-biofilm properties have been demonstrated through FE-SEM imaging of the biofilm development after 3 and 24 h of growth. CONCLUSIONS: A significantly lower vitality of S. mutans cells has been demonstrated when in contact with the GNP filled dental adhesives. Biofilm growth on adhesive-covered dentine tissues demonstrated anti-adhesion properties of the produced materials. µ-TBS results demonstrated no significant difference in µ-TBS between the experimental and the control adhesive. The rheology tests highlighted the necessity to avoid low shear rate regimes during adhesive processing and application in clinical protocol, and confirmed that the adhesive containing the 0.2%wt of GNPs possess mechanical properties comparable with the ones of the control adhesive.


Asunto(s)
Antiinfecciosos/farmacología , Biopelículas/efectos de los fármacos , Cementos Dentales/química , Grafito/química , Streptococcus mutans/fisiología , Antiinfecciosos/química , Cementos Dentales/farmacología , Microscopía Electrónica de Rastreo , Nanoestructuras/química , Estrés Oxidativo/efectos de los fármacos , Reología , Resistencia a la Tracción
10.
J Nanobiotechnology ; 15(1): 57, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28764786

RESUMEN

BACKGROUND: Nanotechnologies are currently revolutionizing the world around us, improving the quality of our lives thanks to a multitude of applications in several areas including the environmental preservation, with the biodeterioration phenomenon representing one of the major concerns. RESULTS: In this study, an innovative nanomaterial consisting of graphene nanoplatelets decorated by zinc oxide nanorods (ZNGs) was tested for the ability to inhibit two different pathogens belonging to bacterial genera frequently associated with nosocomial infections as well as biodeterioration phenomenon: the Gram-positive Staphylococcus aureus and the Gram-negative Pseudomonas aeruginosa. A time- and dose-dependent bactericidal effect in cell viability was highlighted against both bacteria, demonstrating a strong antimicrobial potential of ZNGs. Furthermore, the analysis of bacterial surfaces through Field emission scanning electron microscopy (FESEM) revealed ZNGs mechanical interaction at cell wall level. ZNGs induced in those bacteria deep physical damages not compatible with life as a result of nanoneedle-like action of this nanomaterial together with its nanoblade effect. Cell injuries were confirmed by Fourier transform infrared spectroscopy, revealing that ZNGs antimicrobial effect was related to protein and phospholipid changes as well as a decrease in extracellular polymeric substances; this was also supported by a reduction in biofilm formation of both bacteria. The antibacterial properties of ZNGs applied on building-related materials make them a promising tool for the conservation of indoor/outdoor surfaces. Finally, ZNGs nanotoxicity was assessed in vivo by exploiting the soil free living nematode Caenorhabditis elegans. Notably, no harmful effects of ZNGs on larval development, lifespan, fertility as well as neuromuscular functionality were highlighted in this excellent model for environmental nanotoxicology. CONCLUSIONS: Overall, ZNGs represent a promising candidate for developing biocompatible materials that can be exploitable in antimicrobial applications without releasing toxic compounds, harmful to the environment.


Asunto(s)
Antibacterianos/química , Grafito/química , Nanotubos/química , Óxido de Zinc/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Biopelículas/efectos de los fármacos , Grafito/farmacología , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Óxido de Zinc/farmacología
11.
Sensors (Basel) ; 16(11)2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27792153

RESUMEN

A new sensor made of a vinyl-ester polymer composite filled with multilayer graphene nanoplatelets (MLG) is produced through an innovative capillary rise method for application in strain sensing and structural health monitoring. The new sensor is characterized by high stability of the piezoresistive response under quasi-static consecutive loading/unloading cycles and monotonic tests. This is due to the peculiarity of the fabrication process that ensures a smooth and clean surface of the sensor, without the presence of filler agglomerates acting as micro- or macro-sized defects in the composite.

12.
Polymers (Basel) ; 8(8)2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-30974549

RESUMEN

Development of epoxy or epoxy-based vinyl ester composites with improved mechanical and electromagnetic properties, filled with carbon-based nanomaterials, is of crucial interest for use in aerospace applications as radar absorbing materials at radio frequency. Numerous studies have highlighted the fact that the effective functional properties of this class of polymer composites are strongly dependent on the production process, which affects the dispersion of the nanofiller in the polymer matrix and the formation of micro-sized aggregations, degrading the final properties of the composite. The assessment of the presence of nanofiller aggregation in a composite through microscopy investigations is quite inefficient in the case of large scale applications, and in general provides local information about the aggregation state of the nanofiller rather than an effective representation of the degradation of the functional properties of the composite due to the presence of the aggregates. In this paper, we investigate the mechanical, electrical, and electromagnetic properties of thermosetting polymer composites filled with graphene nanoplatelets (GNPs). Moreover, we propose a novel approach based on measurements of the dielectric permittivity of the composite in the 8⁻12 GHz range in order to assess the presence of nanofiller aggregates and to estimate their average size and dimensions.

13.
Nanomaterials (Basel) ; 6(10)2016 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-28335307

RESUMEN

Nanomaterials are revolutionizing the field of medicine to improve the quality of life due to the myriad of applications stemming from their unique properties, including the antimicrobial activity against pathogens. In this study, the antimicrobial and antibiofilm properties of a novel nanomaterial composed by zinc oxide nanorods-decorated graphene nanoplatelets (ZNGs) are investigated. ZNGs were produced by hydrothermal method and characterized through field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) techniques. The antimicrobial activity of ZNGs was evaluated against Streptococcus mutans, the main bacteriological agent in the etiology of dental caries. Cell viability assay demonstrated that ZNGs exerted a strikingly high killing effect on S. mutans cells in a dose-dependent manner. Moreover, FE-SEM analysis revealed relevant mechanical damages exerted by ZNGs at the cell surface of this dental pathogen rather than reactive oxygen species (ROS) generation. In addition, inductively coupled plasma mass spectrometry (ICP-MS) measurements showed negligible zinc dissolution, demonstrating that zinc ion release in the suspension is not associated with the high cell mortality rate. Finally, our data indicated that also S. mutans biofilm formation was affected by the presence of graphene-zinc oxide (ZnO) based material, as witnessed by the safranin staining and growth curve analysis. Therefore, ZNGs can be a remarkable nanobactericide against one of the main dental pathogens. The potential applications in dental care and therapy are very promising.

14.
Beilstein J Nanotechnol ; 6: 2028-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26665073

RESUMEN

Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp(2) carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 10(5) S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.

15.
Nanoscale ; 5(19): 9023-9, 2013 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-23934344

RESUMEN

In the last years carbon nanotubes have attracted increasing attention for their potential applications in the biomedical field as diagnostic and therapeutic nano tools. Here we investigate the antimicrobial activity of different fully characterized carbon nanotube types (single walled, double walled and multi walled) on representative pathogen species: Gram-positive Staphylococcus aureus, Gram-negative Pseudomonas aeruginosa and the opportunistic fungus Candida albicans. Our results show that all the carbon nanotube types possess a highly significant antimicrobial capacity, even though they have a colony forming unit capacity and induction of oxidative stress in all the microbial species to a different extent. Moreover, scanning electron microscopy analysis revealed that the microbial cells were wrapped or entrapped by carbon nanotube networks. Our data taken together suggest that the reduced capacity of microbial cells to forming colonies and their oxidative response could be related to the cellular stress induced by the interactions of pathogens with the CNT network.


Asunto(s)
Antiinfecciosos/química , Nanotubos de Carbono/química , Antiinfecciosos/síntesis química , Antiinfecciosos/farmacología , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Microscopía Electrónica de Rastreo , Nanotubos de Carbono/toxicidad , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
16.
Nano Lett ; 12(6): 2740-4, 2012 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-22612766

RESUMEN

We evaluated the toxicity of graphite nanoplatelets (GNPs) in the model organism Caenorhabditis elegans. The GNPs resulted nontoxic by measuring longevity as well as reproductive capability end points. An imaging technique based on Fourier transform infrared spectroscopy (FT-IR) mapping was also developed to analyze the GNPs spatial distribution inside the nematodes. Conflicting reports on the in vitro antimicrobial properties of graphene-based nanomaterials prompted us to challenge the host-pathogen system C. elegans-Pseudomonas aeruginosa to assess these findings through an in vivo model.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Grafito/toxicidad , Nanopartículas/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...