Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114197, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38733587

RESUMEN

Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.


Asunto(s)
Interneuronas , Somatostatina , Péptido Intestinal Vasoactivo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Somatostatina/metabolismo , Ratones , Péptido Intestinal Vasoactivo/metabolismo , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/metabolismo , Masculino , Ratones Endogámicos C57BL , Locomoción/fisiología , Conducta Animal/fisiología , Corteza Visual/fisiología , Corteza Visual/metabolismo , Tálamo/fisiología , Tálamo/metabolismo
2.
Cell Rep ; 40(8): 111202, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001978

RESUMEN

Perisomatic inhibition of pyramidal neurons (PNs) coordinates cortical network activity during sensory processing, and this role is mainly attributed to parvalbumin-expressing basket cells (BCs). However, cannabinoid receptor type 1 (CB1)-expressing interneurons are also BCs, but the connectivity and function of these elusive but prominent neocortical inhibitory neurons are unclear. We find that their connectivity pattern is visual area specific. Persistently active CB1 signaling suppresses GABA release from CB1 BCs in the medial secondary visual cortex (V2M), but not in the primary visual cortex (V1). Accordingly, in vivo, tonic CB1 signaling is responsible for higher but less coordinated PN activity in the V2M than in the V1. These differential firing dynamics in the V1 and V2M can be captured by a computational network model that incorporates visual-area-specific properties. Our results indicate a differential CB1-mediated mechanism controlling PN activity, suggesting an alternative connectivity scheme of a specific GABAergic circuit in different cortical areas.


Asunto(s)
Endocannabinoides , Neocórtex , Interneuronas/fisiología , Neuronas/fisiología , Células Piramidales/fisiología , Receptor Cannabinoide CB1 , Ácido gamma-Aminobutírico/fisiología
3.
Neuron ; 110(15): 2438-2454.e8, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35700736

RESUMEN

GluN3A is an atypical glycine-binding subunit of NMDA receptors (NMDARs) whose actions in the brain are mostly unknown. Here, we show that the expression of GluN3A subunits controls the excitability of mouse adult cortical and amygdalar circuits via an unusual signaling mechanism involving the formation of excitatory glycine GluN1/GluN3A receptors (eGlyRs) and their tonic activation by extracellular glycine. eGlyRs are mostly extrasynaptic and reside in specific neuronal populations, including the principal cells of the basolateral amygdala (BLA) and SST-positive interneurons (SST-INs) of the neocortex. In the BLA, tonic eGlyR currents are sensitive to fear-conditioning protocols, are subject to neuromodulation by the dopaminergic system, and control the stability of fear memories. In the neocortex, eGlyRs control the in vivo spiking of SST-INs and the behavior-dependent modulation of cortical activity. GluN3A-containing eGlyRs thus represent a novel and widespread signaling modality in the adult brain, with attributes that strikingly depart from those of conventional NMDARs.


Asunto(s)
Amígdala del Cerebelo , Neocórtex , Receptores de Glicina , Receptores de N-Metil-D-Aspartato , Amígdala del Cerebelo/metabolismo , Animales , Corteza Cerebral/metabolismo , Glicina/metabolismo , Interneuronas/metabolismo , Ratones , Neocórtex/metabolismo , Neuronas/metabolismo , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
4.
PLoS Biol ; 19(5): e3001279, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34038402

RESUMEN

Hyperactivation of the mammalian target of rapamycin (mTOR) pathway can cause malformation of cortical development (MCD) with associated epilepsy and intellectual disability (ID) through a yet unknown mechanism. Here, we made use of the recently identified dominant-active mutation in Ras Homolog Enriched in Brain 1 (RHEB), RHEBp.P37L, to gain insight in the mechanism underlying the epilepsy caused by hyperactivation of the mTOR pathway. Focal expression of RHEBp.P37L in mouse somatosensory cortex (SScx) results in an MCD-like phenotype, with increased mTOR signaling, ectopic localization of neurons, and reliable generalized seizures. We show that in this model, the mTOR-dependent seizures are caused by enhanced axonal connectivity, causing hyperexcitability of distally connected neurons. Indeed, blocking axonal vesicle release from the RHEBp.P37L neurons alone completely stopped the seizures and normalized the hyperexcitability of the distally connected neurons. These results provide new evidence of the extent of anatomical and physiological abnormalities caused by mTOR hyperactivity, beyond local malformations, which can lead to generalized epilepsy.


Asunto(s)
Proteína Homóloga de Ras Enriquecida en el Cerebro/metabolismo , Convulsiones/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Axones/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Epilepsia/metabolismo , Epilepsia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Convulsiones/fisiopatología , Transducción de Señal , Corteza Somatosensorial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA